2016-05-30 16:37:03 +00:00
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// OpenGL Mathematics Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net)
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Created : 2007-04-03
|
|
|
|
// Updated : 2009-01-20
|
|
|
|
// Licence : This source is under MIT licence
|
|
|
|
// File : glm/gtx/intersect.inl
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#include "../geometric.hpp"
|
|
|
|
#include <cfloat>
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
namespace glm
|
|
|
|
{
|
|
|
|
template <typename genType>
|
|
|
|
GLM_FUNC_QUALIFIER bool intersectRayPlane
|
|
|
|
(
|
|
|
|
genType const & orig, genType const & dir,
|
|
|
|
genType const & planeOrig, genType const & planeNormal,
|
|
|
|
typename genType::value_type & intersectionDistance
|
|
|
|
)
|
|
|
|
{
|
|
|
|
typename genType::value_type d = glm::dot(dir, planeNormal);
|
|
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
|
|
|
|
|
|
if(d < Epsilon)
|
|
|
|
{
|
|
|
|
intersectionDistance = glm::dot(planeOrig - orig, planeNormal) / d;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename genType>
|
|
|
|
GLM_FUNC_QUALIFIER bool intersectRayTriangle
|
|
|
|
(
|
|
|
|
genType const & orig, genType const & dir,
|
|
|
|
genType const & v0, genType const & v1, genType const & v2,
|
|
|
|
genType & baryPosition
|
|
|
|
)
|
|
|
|
{
|
|
|
|
genType e1 = v1 - v0;
|
|
|
|
genType e2 = v2 - v0;
|
|
|
|
|
|
|
|
genType p = glm::cross(dir, e2);
|
|
|
|
|
|
|
|
typename genType::value_type a = glm::dot(e1, p);
|
|
|
|
|
|
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
|
|
if(a < Epsilon)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
typename genType::value_type f = typename genType::value_type(1.0f) / a;
|
|
|
|
|
|
|
|
genType s = orig - v0;
|
|
|
|
baryPosition.x = f * glm::dot(s, p);
|
|
|
|
if(baryPosition.x < typename genType::value_type(0.0f))
|
|
|
|
return false;
|
|
|
|
if(baryPosition.x > typename genType::value_type(1.0f))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
genType q = glm::cross(s, e1);
|
|
|
|
baryPosition.y = f * glm::dot(dir, q);
|
|
|
|
if(baryPosition.y < typename genType::value_type(0.0f))
|
|
|
|
return false;
|
|
|
|
if(baryPosition.y + baryPosition.x > typename genType::value_type(1.0f))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
baryPosition.z = f * glm::dot(e2, q);
|
|
|
|
|
|
|
|
return baryPosition.z >= typename genType::value_type(0.0f);
|
|
|
|
}
|
|
|
|
|
|
|
|
//template <typename genType>
|
|
|
|
//GLM_FUNC_QUALIFIER bool intersectRayTriangle
|
|
|
|
//(
|
|
|
|
// genType const & orig, genType const & dir,
|
|
|
|
// genType const & vert0, genType const & vert1, genType const & vert2,
|
|
|
|
// genType & position
|
|
|
|
//)
|
|
|
|
//{
|
|
|
|
// typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
|
|
//
|
|
|
|
// genType edge1 = vert1 - vert0;
|
|
|
|
// genType edge2 = vert2 - vert0;
|
|
|
|
//
|
|
|
|
// genType pvec = cross(dir, edge2);
|
|
|
|
//
|
|
|
|
// float det = dot(edge1, pvec);
|
|
|
|
// if(det < Epsilon)
|
|
|
|
// return false;
|
|
|
|
//
|
|
|
|
// genType tvec = orig - vert0;
|
|
|
|
//
|
|
|
|
// position.y = dot(tvec, pvec);
|
|
|
|
// if (position.y < typename genType::value_type(0) || position.y > det)
|
|
|
|
// return typename genType::value_type(0);
|
|
|
|
//
|
|
|
|
// genType qvec = cross(tvec, edge1);
|
|
|
|
//
|
|
|
|
// position.z = dot(dir, qvec);
|
|
|
|
// if (position.z < typename genType::value_type(0) || position.y + position.z > det)
|
|
|
|
// return typename genType::value_type(0);
|
|
|
|
//
|
|
|
|
// position.x = dot(edge2, qvec);
|
|
|
|
// position *= typename genType::value_type(1) / det;
|
|
|
|
//
|
|
|
|
// return typename genType::value_type(1);
|
|
|
|
//}
|
|
|
|
|
|
|
|
template <typename genType>
|
|
|
|
GLM_FUNC_QUALIFIER bool intersectLineTriangle
|
|
|
|
(
|
|
|
|
genType const & orig, genType const & dir,
|
|
|
|
genType const & vert0, genType const & vert1, genType const & vert2,
|
|
|
|
genType & position
|
|
|
|
)
|
|
|
|
{
|
|
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
|
|
|
|
|
|
genType edge1 = vert1 - vert0;
|
|
|
|
genType edge2 = vert2 - vert0;
|
|
|
|
|
|
|
|
genType pvec = cross(dir, edge2);
|
|
|
|
|
|
|
|
float det = dot(edge1, pvec);
|
|
|
|
|
|
|
|
if (det > -Epsilon && det < Epsilon)
|
|
|
|
return false;
|
|
|
|
float inv_det = typename genType::value_type(1) / det;
|
|
|
|
|
|
|
|
genType tvec = orig - vert0;
|
|
|
|
|
|
|
|
position.y = dot(tvec, pvec) * inv_det;
|
|
|
|
if (position.y < typename genType::value_type(0) || position.y > typename genType::value_type(1))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
genType qvec = cross(tvec, edge1);
|
|
|
|
|
|
|
|
position.z = dot(dir, qvec) * inv_det;
|
|
|
|
if (position.z < typename genType::value_type(0) || position.y + position.z > typename genType::value_type(1))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
position.x = dot(edge2, qvec) * inv_det;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename genType>
|
|
|
|
GLM_FUNC_QUALIFIER bool intersectRaySphere
|
|
|
|
(
|
|
|
|
genType const & rayStarting, genType const & rayNormalizedDirection,
|
|
|
|
genType const & sphereCenter, const typename genType::value_type sphereRadiusSquered,
|
|
|
|
typename genType::value_type & intersectionDistance
|
|
|
|
)
|
|
|
|
{
|
|
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
|
|
genType diff = sphereCenter - rayStarting;
|
|
|
|
typename genType::value_type t0 = dot(diff, rayNormalizedDirection);
|
|
|
|
typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
|
|
|
|
if( dSquared > sphereRadiusSquered )
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
typename genType::value_type t1 = sqrt( sphereRadiusSquered - dSquared );
|
|
|
|
intersectionDistance = t0 > t1 + Epsilon ? t0 - t1 : t0 + t1;
|
|
|
|
return intersectionDistance > Epsilon;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename genType>
|
|
|
|
GLM_FUNC_QUALIFIER bool intersectRaySphere
|
|
|
|
(
|
|
|
|
genType const & rayStarting, genType const & rayNormalizedDirection,
|
|
|
|
genType const & sphereCenter, const typename genType::value_type sphereRadius,
|
|
|
|
genType & intersectionPosition, genType & intersectionNormal
|
|
|
|
)
|
|
|
|
{
|
|
|
|
typename genType::value_type distance;
|
|
|
|
if( intersectRaySphere( rayStarting, rayNormalizedDirection, sphereCenter, sphereRadius * sphereRadius, distance ) )
|
|
|
|
{
|
|
|
|
intersectionPosition = rayStarting + rayNormalizedDirection * distance;
|
|
|
|
intersectionNormal = (intersectionPosition - sphereCenter) / sphereRadius;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename genType>
|
|
|
|
GLM_FUNC_QUALIFIER bool intersectLineSphere
|
|
|
|
(
|
|
|
|
genType const & point0, genType const & point1,
|
|
|
|
genType const & sphereCenter, typename genType::value_type sphereRadius,
|
|
|
|
genType & intersectionPoint1, genType & intersectionNormal1,
|
|
|
|
genType & intersectionPoint2, genType & intersectionNormal2
|
|
|
|
)
|
|
|
|
{
|
|
|
|
typename genType::value_type Epsilon = std::numeric_limits<typename genType::value_type>::epsilon();
|
|
|
|
genType dir = normalize(point1 - point0);
|
|
|
|
genType diff = sphereCenter - point0;
|
|
|
|
typename genType::value_type t0 = dot(diff, dir);
|
|
|
|
typename genType::value_type dSquared = dot(diff, diff) - t0 * t0;
|
|
|
|
if( dSquared > sphereRadius * sphereRadius )
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
typename genType::value_type t1 = sqrt( sphereRadius * sphereRadius - dSquared );
|
|
|
|
if( t0 < t1 + Epsilon )
|
|
|
|
t1 = -t1;
|
|
|
|
intersectionPoint1 = point0 + dir * (t0 - t1);
|
|
|
|
intersectionNormal1 = (intersectionPoint1 - sphereCenter) / sphereRadius;
|
|
|
|
intersectionPoint2 = point0 + dir * (t0 + t1);
|
|
|
|
intersectionNormal2 = (intersectionPoint2 - sphereCenter) / sphereRadius;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}//namespace glm
|