mirror of
https://github.com/acemod/ACE3.git
synced 2024-08-30 18:23:18 +00:00
144 lines
5.4 KiB
Plaintext
144 lines
5.4 KiB
Plaintext
|
///////////////////////////////////////////////////////////////////////////////////
|
||
|
/// OpenGL Mathematics (glm.g-truc.net)
|
||
|
///
|
||
|
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
|
||
|
/// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
/// of this software and associated documentation files (the "Software"), to deal
|
||
|
/// in the Software without restriction, including without limitation the rights
|
||
|
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
/// copies of the Software, and to permit persons to whom the Software is
|
||
|
/// furnished to do so, subject to the following conditions:
|
||
|
///
|
||
|
/// The above copyright notice and this permission notice shall be included in
|
||
|
/// all copies or substantial portions of the Software.
|
||
|
///
|
||
|
/// Restrictions:
|
||
|
/// By making use of the Software for military purposes, you choose to make
|
||
|
/// a Bunny unhappy.
|
||
|
///
|
||
|
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
/// THE SOFTWARE.
|
||
|
///
|
||
|
/// @ref gtx_matrix_query
|
||
|
/// @file glm/gtx/matrix_query.inl
|
||
|
/// @date 2007-03-05 / 2007-03-05
|
||
|
/// @author Christophe Riccio
|
||
|
///////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
namespace glm
|
||
|
{
|
||
|
template<typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER bool isNull(tmat2x2<T, P> const & m, T const & epsilon)
|
||
|
{
|
||
|
bool result = true;
|
||
|
for(detail::component_count_t i = 0; result && i < 2 ; ++i)
|
||
|
result = isNull(m[i], epsilon);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template<typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER bool isNull(tmat3x3<T, P> const & m, T const & epsilon)
|
||
|
{
|
||
|
bool result = true;
|
||
|
for(detail::component_count_t i = 0; result && i < 3 ; ++i)
|
||
|
result = isNull(m[i], epsilon);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template<typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER bool isNull(tmat4x4<T, P> const & m, T const & epsilon)
|
||
|
{
|
||
|
bool result = true;
|
||
|
for(detail::component_count_t i = 0; result && i < 4 ; ++i)
|
||
|
result = isNull(m[i], epsilon);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template<typename T, precision P, template <typename, precision> class matType>
|
||
|
GLM_FUNC_QUALIFIER bool isIdentity(matType<T, P> const & m, T const & epsilon)
|
||
|
{
|
||
|
bool result = true;
|
||
|
for(detail::component_count_t i(0); result && i < detail::component_count(m[0]); ++i)
|
||
|
{
|
||
|
for(detail::component_count_t j(0); result && j < i ; ++j)
|
||
|
result = abs(m[i][j]) <= epsilon;
|
||
|
if(result)
|
||
|
result = abs(m[i][i] - 1) <= epsilon;
|
||
|
for(detail::component_count_t j(i + 1); result && j < detail::component_count(m); ++j)
|
||
|
result = abs(m[i][j]) <= epsilon;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template<typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER bool isNormalized(tmat2x2<T, P> const & m, T const & epsilon)
|
||
|
{
|
||
|
bool result(true);
|
||
|
for(detail::component_count_t i(0); result && i < detail::component_count(m); ++i)
|
||
|
result = isNormalized(m[i], epsilon);
|
||
|
for(detail::component_count_t i(0); result && i < detail::component_count(m); ++i)
|
||
|
{
|
||
|
typename tmat2x2<T, P>::col_type v;
|
||
|
for(detail::component_count_t j(0); j < detail::component_count(m); ++j)
|
||
|
v[j] = m[j][i];
|
||
|
result = isNormalized(v, epsilon);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template<typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER bool isNormalized(tmat3x3<T, P> const & m, T const & epsilon)
|
||
|
{
|
||
|
bool result(true);
|
||
|
for(detail::component_count_t i(0); result && i < detail::component_count(m); ++i)
|
||
|
result = isNormalized(m[i], epsilon);
|
||
|
for(detail::component_count_t i(0); result && i < detail::component_count(m); ++i)
|
||
|
{
|
||
|
typename tmat3x3<T, P>::col_type v;
|
||
|
for(detail::component_count_t j(0); j < detail::component_count(m); ++j)
|
||
|
v[j] = m[j][i];
|
||
|
result = isNormalized(v, epsilon);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template<typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER bool isNormalized(tmat4x4<T, P> const & m, T const & epsilon)
|
||
|
{
|
||
|
bool result(true);
|
||
|
for(detail::component_count_t i(0); result && i < detail::component_count(m); ++i)
|
||
|
result = isNormalized(m[i], epsilon);
|
||
|
for(detail::component_count_t i(0); result && i < detail::component_count(m); ++i)
|
||
|
{
|
||
|
typename tmat4x4<T, P>::col_type v;
|
||
|
for(detail::component_count_t j(0); j < detail::component_count(m); ++j)
|
||
|
v[j] = m[j][i];
|
||
|
result = isNormalized(v, epsilon);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template<typename T, precision P, template <typename, precision> class matType>
|
||
|
GLM_FUNC_QUALIFIER bool isOrthogonal(matType<T, P> const & m, T const & epsilon)
|
||
|
{
|
||
|
bool result(true);
|
||
|
for(detail::component_count_t i(0); result && i < detail::component_count(m) - 1; ++i)
|
||
|
for(detail::component_count_t j(i + 1); result && j < detail::component_count(m); ++j)
|
||
|
result = areOrthogonal(m[i], m[j], epsilon);
|
||
|
|
||
|
if(result)
|
||
|
{
|
||
|
matType<T, P> tmp = transpose(m);
|
||
|
for(detail::component_count_t i(0); result && i < detail::component_count(m) - 1 ; ++i)
|
||
|
for(detail::component_count_t j(i + 1); result && j < detail::component_count(m); ++j)
|
||
|
result = areOrthogonal(tmp[i], tmp[j], epsilon);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
}//namespace glm
|