mirror of
https://github.com/acemod/ACE3.git
synced 2024-08-30 18:23:18 +00:00
164 lines
5.3 KiB
Plaintext
164 lines
5.3 KiB
Plaintext
|
///////////////////////////////////////////////////////////////////////////////////
|
||
|
/// OpenGL Mathematics (glm.g-truc.net)
|
||
|
///
|
||
|
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
|
||
|
/// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
/// of this software and associated documentation files (the "Software"), to deal
|
||
|
/// in the Software without restriction, including without limitation the rights
|
||
|
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
/// copies of the Software, and to permit persons to whom the Software is
|
||
|
/// furnished to do so, subject to the following conditions:
|
||
|
///
|
||
|
/// The above copyright notice and this permission notice shall be included in
|
||
|
/// all copies or substantial portions of the Software.
|
||
|
///
|
||
|
/// Restrictions:
|
||
|
/// By making use of the Software for military purposes, you choose to make
|
||
|
/// a Bunny unhappy.
|
||
|
///
|
||
|
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
/// THE SOFTWARE.
|
||
|
///
|
||
|
/// @ref gtx_matrix_interpolation
|
||
|
/// @file glm/gtx/matrix_interpolation.hpp
|
||
|
/// @date 2011-03-05 / 2011-03-05
|
||
|
/// @author Christophe Riccio
|
||
|
///////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
namespace glm
|
||
|
{
|
||
|
template <typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER void axisAngle
|
||
|
(
|
||
|
tmat4x4<T, P> const & mat,
|
||
|
tvec3<T, P> & axis,
|
||
|
T & angle
|
||
|
)
|
||
|
{
|
||
|
T epsilon = (T)0.01;
|
||
|
T epsilon2 = (T)0.1;
|
||
|
|
||
|
if((abs(mat[1][0] - mat[0][1]) < epsilon) && (abs(mat[2][0] - mat[0][2]) < epsilon) && (abs(mat[2][1] - mat[1][2]) < epsilon))
|
||
|
{
|
||
|
if ((abs(mat[1][0] + mat[0][1]) < epsilon2) && (abs(mat[2][0] + mat[0][2]) < epsilon2) && (abs(mat[2][1] + mat[1][2]) < epsilon2) && (abs(mat[0][0] + mat[1][1] + mat[2][2] - (T)3.0) < epsilon2))
|
||
|
{
|
||
|
angle = (T)0.0;
|
||
|
axis.x = (T)1.0;
|
||
|
axis.y = (T)0.0;
|
||
|
axis.z = (T)0.0;
|
||
|
return;
|
||
|
}
|
||
|
angle = static_cast<T>(3.1415926535897932384626433832795);
|
||
|
T xx = (mat[0][0] + (T)1.0) / (T)2.0;
|
||
|
T yy = (mat[1][1] + (T)1.0) / (T)2.0;
|
||
|
T zz = (mat[2][2] + (T)1.0) / (T)2.0;
|
||
|
T xy = (mat[1][0] + mat[0][1]) / (T)4.0;
|
||
|
T xz = (mat[2][0] + mat[0][2]) / (T)4.0;
|
||
|
T yz = (mat[2][1] + mat[1][2]) / (T)4.0;
|
||
|
if((xx > yy) && (xx > zz))
|
||
|
{
|
||
|
if (xx < epsilon) {
|
||
|
axis.x = (T)0.0;
|
||
|
axis.y = (T)0.7071;
|
||
|
axis.z = (T)0.7071;
|
||
|
} else {
|
||
|
axis.x = sqrt(xx);
|
||
|
axis.y = xy / axis.x;
|
||
|
axis.z = xz / axis.x;
|
||
|
}
|
||
|
}
|
||
|
else if (yy > zz)
|
||
|
{
|
||
|
if (yy < epsilon) {
|
||
|
axis.x = (T)0.7071;
|
||
|
axis.y = (T)0.0;
|
||
|
axis.z = (T)0.7071;
|
||
|
} else {
|
||
|
axis.y = sqrt(yy);
|
||
|
axis.x = xy / axis.y;
|
||
|
axis.z = yz / axis.y;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (zz < epsilon) {
|
||
|
axis.x = (T)0.7071;
|
||
|
axis.y = (T)0.7071;
|
||
|
axis.z = (T)0.0;
|
||
|
} else {
|
||
|
axis.z = sqrt(zz);
|
||
|
axis.x = xz / axis.z;
|
||
|
axis.y = yz / axis.z;
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
T s = sqrt((mat[2][1] - mat[1][2]) * (mat[2][1] - mat[1][2]) + (mat[2][0] - mat[0][2]) * (mat[2][0] - mat[0][2]) + (mat[1][0] - mat[0][1]) * (mat[1][0] - mat[0][1]));
|
||
|
if (glm::abs(s) < T(0.001))
|
||
|
s = (T)1.0;
|
||
|
angle = acos((mat[0][0] + mat[1][1] + mat[2][2] - (T)1.0) / (T)2.0);
|
||
|
axis.x = (mat[1][2] - mat[2][1]) / s;
|
||
|
axis.y = (mat[2][0] - mat[0][2]) / s;
|
||
|
axis.z = (mat[0][1] - mat[1][0]) / s;
|
||
|
}
|
||
|
|
||
|
template <typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER tmat4x4<T, P> axisAngleMatrix
|
||
|
(
|
||
|
tvec3<T, P> const & axis,
|
||
|
T const angle
|
||
|
)
|
||
|
{
|
||
|
T c = cos(angle);
|
||
|
T s = sin(angle);
|
||
|
T t = static_cast<T>(1) - c;
|
||
|
tvec3<T, P> n = normalize(axis);
|
||
|
|
||
|
return tmat4x4<T, P>(
|
||
|
t * n.x * n.x + c, t * n.x * n.y + n.z * s, t * n.x * n.z - n.y * s, T(0),
|
||
|
t * n.x * n.y - n.z * s, t * n.y * n.y + c, t * n.y * n.z + n.x * s, T(0),
|
||
|
t * n.x * n.z + n.y * s, t * n.y * n.z - n.x * s, t * n.z * n.z + c, T(0),
|
||
|
T(0), T(0), T(0), T(1)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
template <typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER tmat4x4<T, P> extractMatrixRotation
|
||
|
(
|
||
|
tmat4x4<T, P> const & mat
|
||
|
)
|
||
|
{
|
||
|
return tmat4x4<T, P>(
|
||
|
mat[0][0], mat[0][1], mat[0][2], 0.0,
|
||
|
mat[1][0], mat[1][1], mat[1][2], 0.0,
|
||
|
mat[2][0], mat[2][1], mat[2][2], 0.0,
|
||
|
0.0, 0.0, 0.0, 1.0
|
||
|
);
|
||
|
}
|
||
|
|
||
|
template <typename T, precision P>
|
||
|
GLM_FUNC_QUALIFIER tmat4x4<T, P> interpolate
|
||
|
(
|
||
|
tmat4x4<T, P> const & m1,
|
||
|
tmat4x4<T, P> const & m2,
|
||
|
T const delta
|
||
|
)
|
||
|
{
|
||
|
tmat4x4<T, P> m1rot = extractMatrixRotation(m1);
|
||
|
tmat4x4<T, P> dltRotation = m2 * transpose(m1rot);
|
||
|
tvec3<T, P> dltAxis;
|
||
|
T dltAngle;
|
||
|
axisAngle(dltRotation, dltAxis, dltAngle);
|
||
|
tmat4x4<T, P> out = axisAngleMatrix(dltAxis, dltAngle * delta) * m1rot;
|
||
|
out[3][0] = m1[3][0] + delta * (m2[3][0] - m1[3][0]);
|
||
|
out[3][1] = m1[3][1] + delta * (m2[3][1] - m1[3][1]);
|
||
|
out[3][2] = m1[3][2] + delta * (m2[3][2] - m1[3][2]);
|
||
|
return out;
|
||
|
}
|
||
|
}//namespace glm
|