2016-05-30 16:37:03 +00:00
|
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// OpenGL Mathematics (glm.g-truc.net)
|
|
|
|
///
|
|
|
|
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
|
|
|
|
/// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
/// of this software and associated documentation files (the "Software"), to deal
|
|
|
|
/// in the Software without restriction, including without limitation the rights
|
|
|
|
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
/// copies of the Software, and to permit persons to whom the Software is
|
|
|
|
/// furnished to do so, subject to the following conditions:
|
|
|
|
///
|
|
|
|
/// The above copyright notice and this permission notice shall be included in
|
|
|
|
/// all copies or substantial portions of the Software.
|
|
|
|
///
|
|
|
|
/// Restrictions:
|
|
|
|
/// By making use of the Software for military purposes, you choose to make
|
|
|
|
/// a Bunny unhappy.
|
|
|
|
///
|
|
|
|
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
|
/// THE SOFTWARE.
|
|
|
|
///
|
|
|
|
/// @ref gtx_matrix_decompose
|
|
|
|
/// @file glm/gtx/matrix_decompose.inl
|
|
|
|
/// @date 2014-08-29 / 2014-08-29
|
|
|
|
/// @author Christophe Riccio
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
namespace glm
|
|
|
|
{
|
|
|
|
/// Make a linear combination of two vectors and return the result.
|
|
|
|
// result = (a * ascl) + (b * bscl)
|
|
|
|
template <typename T, precision P>
|
|
|
|
GLM_FUNC_QUALIFIER tvec3<T, P> combine(
|
|
|
|
tvec3<T, P> const & a,
|
|
|
|
tvec3<T, P> const & b,
|
|
|
|
T ascl, T bscl)
|
|
|
|
{
|
|
|
|
return (a * ascl) + (b * bscl);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T, precision P>
|
|
|
|
GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength)
|
|
|
|
{
|
|
|
|
T len = glm::length(v);
|
|
|
|
if(len != 0)
|
|
|
|
{
|
|
|
|
T l = desiredLength / len;
|
|
|
|
v[0] *= l;
|
|
|
|
v[1] *= l;
|
|
|
|
v[2] *= l;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Matrix decompose
|
|
|
|
* http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
|
|
|
|
* Decomposes the mode matrix to translations,rotation scale components
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
template <typename T, precision P>
|
|
|
|
GLM_FUNC_QUALIFIER bool decompose(tmat4x4<T, P> const & ModelMatrix, tvec3<T, P> & Scale, tquat<T, P> & Orientation, tvec3<T, P> & Translation, tvec3<T, P> & Skew, tvec4<T, P> & Perspective)
|
|
|
|
{
|
|
|
|
tmat4x4<T, P> LocalMatrix(ModelMatrix);
|
|
|
|
|
|
|
|
// Normalize the matrix.
|
|
|
|
if(LocalMatrix[3][3] == static_cast<T>(0))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for(length_t i = 0; i < 4; ++i)
|
|
|
|
for(length_t j = 0; j < 4; ++j)
|
|
|
|
LocalMatrix[i][j] /= LocalMatrix[3][3];
|
|
|
|
|
|
|
|
// perspectiveMatrix is used to solve for perspective, but it also provides
|
|
|
|
// an easy way to test for singularity of the upper 3x3 component.
|
|
|
|
tmat4x4<T, P> PerspectiveMatrix(LocalMatrix);
|
|
|
|
|
|
|
|
for(length_t i = 0; i < 3; i++)
|
|
|
|
PerspectiveMatrix[i][3] = 0;
|
|
|
|
PerspectiveMatrix[3][3] = 1;
|
|
|
|
|
|
|
|
/// TODO: Fixme!
|
|
|
|
if(determinant(PerspectiveMatrix) == static_cast<T>(0))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// First, isolate perspective. This is the messiest.
|
|
|
|
if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0)
|
|
|
|
{
|
|
|
|
// rightHandSide is the right hand side of the equation.
|
|
|
|
tvec4<T, P> RightHandSide;
|
|
|
|
RightHandSide[0] = LocalMatrix[0][3];
|
|
|
|
RightHandSide[1] = LocalMatrix[1][3];
|
|
|
|
RightHandSide[2] = LocalMatrix[2][3];
|
|
|
|
RightHandSide[3] = LocalMatrix[3][3];
|
|
|
|
|
|
|
|
// Solve the equation by inverting PerspectiveMatrix and multiplying
|
|
|
|
// rightHandSide by the inverse. (This is the easiest way, not
|
|
|
|
// necessarily the best.)
|
|
|
|
tmat4x4<T, P> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix);
|
|
|
|
tmat4x4<T, P> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
|
|
|
|
|
|
|
|
Perspective = TransposedInversePerspectiveMatrix * RightHandSide;
|
|
|
|
// v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
|
|
|
|
|
|
|
|
// Clear the perspective partition
|
|
|
|
LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = 0;
|
|
|
|
LocalMatrix[3][3] = 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// No perspective.
|
|
|
|
Perspective = tvec4<T, P>(0, 0, 0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Next take care of translation (easy).
|
|
|
|
Translation = tvec3<T, P>(LocalMatrix[3]);
|
|
|
|
LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
|
|
|
|
|
|
|
|
tvec3<T, P> Row[3], Pdum3;
|
|
|
|
|
|
|
|
// Now get scale and shear.
|
|
|
|
for(length_t i = 0; i < 3; ++i)
|
|
|
|
for(int j = 0; j < 3; ++j)
|
|
|
|
Row[i][j] = LocalMatrix[i][j];
|
|
|
|
|
|
|
|
// Compute X scale factor and normalize first row.
|
|
|
|
Scale.x = length(Row[0]);// v3Length(Row[0]);
|
|
|
|
|
|
|
|
v3Scale(Row[0], static_cast<T>(1));
|
|
|
|
|
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
|
|
|
Skew.z = dot(Row[0], Row[1]);
|
|
|
|
Row[1] = combine(Row[1], Row[0], static_cast<T>(1), -Skew.z);
|
|
|
|
|
|
|
|
// Now, compute Y scale and normalize 2nd row.
|
|
|
|
Scale.y = length(Row[1]);
|
|
|
|
v3Scale(Row[1], static_cast<T>(1));
|
|
|
|
Skew.z /= Scale.y;
|
|
|
|
|
|
|
|
// Compute XZ and YZ shears, orthogonalize 3rd row.
|
|
|
|
Skew.y = glm::dot(Row[0], Row[2]);
|
|
|
|
Row[2] = combine(Row[2], Row[0], static_cast<T>(1), -Skew.y);
|
|
|
|
Skew.x = glm::dot(Row[1], Row[2]);
|
|
|
|
Row[2] = combine(Row[2], Row[1], static_cast<T>(1), -Skew.x);
|
|
|
|
|
|
|
|
// Next, get Z scale and normalize 3rd row.
|
|
|
|
Scale.z = length(Row[2]);
|
|
|
|
v3Scale(Row[2], static_cast<T>(1));
|
|
|
|
Skew.y /= Scale.z;
|
|
|
|
Skew.x /= Scale.z;
|
|
|
|
|
|
|
|
// At this point, the matrix (in rows[]) is orthonormal.
|
|
|
|
// Check for a coordinate system flip. If the determinant
|
|
|
|
// is -1, then negate the matrix and the scaling factors.
|
|
|
|
Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
|
|
|
|
if(dot(Row[0], Pdum3) < 0)
|
|
|
|
{
|
|
|
|
for(length_t i = 0; i < 3; i++)
|
|
|
|
{
|
|
|
|
Scale.x *= static_cast<T>(-1);
|
|
|
|
Row[i] *= static_cast<T>(-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now, get the rotations out, as described in the gem.
|
|
|
|
|
|
|
|
// FIXME - Add the ability to return either quaternions (which are
|
|
|
|
// easier to recompose with) or Euler angles (rx, ry, rz), which
|
|
|
|
// are easier for authors to deal with. The latter will only be useful
|
|
|
|
// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
|
|
|
|
// will leave the Euler angle code here for now.
|
|
|
|
|
|
|
|
// ret.rotateY = asin(-Row[0][2]);
|
|
|
|
// if (cos(ret.rotateY) != 0) {
|
|
|
|
// ret.rotateX = atan2(Row[1][2], Row[2][2]);
|
|
|
|
// ret.rotateZ = atan2(Row[0][1], Row[0][0]);
|
|
|
|
// } else {
|
|
|
|
// ret.rotateX = atan2(-Row[2][0], Row[1][1]);
|
|
|
|
// ret.rotateZ = 0;
|
|
|
|
// }
|
|
|
|
|
|
|
|
T s, t, x, y, z, w;
|
|
|
|
|
|
|
|
t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0;
|
|
|
|
|
|
|
|
if(t > 1e-4)
|
|
|
|
{
|
|
|
|
s = 0.5 / sqrt(t);
|
|
|
|
w = 0.25 / s;
|
|
|
|
x = (Row[2][1] - Row[1][2]) * s;
|
|
|
|
y = (Row[0][2] - Row[2][0]) * s;
|
|
|
|
z = (Row[1][0] - Row[0][1]) * s;
|
|
|
|
}
|
|
|
|
else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
|
|
|
|
{
|
|
|
|
s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx
|
|
|
|
x = 0.25 * s;
|
|
|
|
y = (Row[0][1] + Row[1][0]) / s;
|
|
|
|
z = (Row[0][2] + Row[2][0]) / s;
|
|
|
|
w = (Row[2][1] - Row[1][2]) / s;
|
|
|
|
}
|
|
|
|
else if(Row[1][1] > Row[2][2])
|
|
|
|
{
|
|
|
|
s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy
|
|
|
|
x = (Row[0][1] + Row[1][0]) / s;
|
|
|
|
y = 0.25 * s;
|
|
|
|
z = (Row[1][2] + Row[2][1]) / s;
|
|
|
|
w = (Row[0][2] - Row[2][0]) / s;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz
|
|
|
|
x = (Row[0][2] + Row[2][0]) / s;
|
|
|
|
y = (Row[1][2] + Row[2][1]) / s;
|
|
|
|
z = 0.25 * s;
|
|
|
|
w = (Row[1][0] - Row[0][1]) / s;
|
|
|
|
}
|
|
|
|
|
|
|
|
Orientation.x = x;
|
|
|
|
Orientation.y = y;
|
|
|
|
Orientation.z = z;
|
|
|
|
Orientation.w = w;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}//namespace glm
|