Calculations and Assumptions for Penetration Model

Relatively simple one-dimensional expressions of hydrodynamics can be used to model
the penetration and crater development (permanent cavity) of a deforming bullet in tissue. In the
discussion that follows, certain assumptions are maintained:

e The projectile (bullet) deforms primarily by ductile erosion, rather than by
fragmentation

e No significant yaw or pitch of the bullet is observed during penetration

e Energy not accounted for by the material failure criterion is adequately captured
by the inertial and viscous drag losses (i.e., direct heating is insignificant and
elastic responses are secondary, late time effects)

There are two distinct phases of behavior for a deforming bullet during a penetration
event. In the first, called the hydrodynamic penetration phase, the bullet is subject to plastic
deformation under the pressure felt at its interface with the tissue in the target. In the latter phase,
called the rigid-body penetration phase, the bullet has ceased to deform plastically and penetrates
without further change in shape or loss of mass. Different mechanical expressions are used to
describe these two phases. Integration is performed in both phases in terms of velocity, a
convenient quantity.

The method described does not explicitly account for the significant energy expended by
bullet deformation and mass loss. However, the effect of these behaviors is otherwise described
by adapting the Tate equations for a homogenous eroding rod in hydrodynamic penetration and
by using a separate set of functions to calculate variables such as expanded diameter and retained
mass as a function of the deformed length of the bullet. Since the Tate equations are well
supported by analytical and empirical evidence, we may use them with confidence, and since the
rigid body mechanics do depend explicitly on the kinetic energy (using retained mass and the
known velocity), the results should be very good.

The principal expressions of the penetration mechanics in this method are analytical,
which is a great strength of the method. Empirical values are introduced in the implementation to
account for bullet expansion and mass loss, based (properly) on test results. The method accounts
for inertial and viscous drag forces, material failure conditions, and strength effects at low
velocities. While both penetration and cavity diameter are calculated, the model is truly only
one-dimensional in the axial and radial dimensions (call it 1-and-a-half-dimensional); no
meshing scheme is involved, nor are material strains calculated to determine cavity growth.

Tate Equations for Eroding Rods (Hydrodynamic Penetration)

The Tate equations were developed to describe the penetration of a solid, homogeneous
cylindrical rod penetrating a homogeneous target. These equations are derived by using a
momentum balance at the stagnation point and assuming that the non-deformed portion of the
eroding rod behaves as a rigid body. Integration is performed in terms of decaying velocity. The
Tate equations are adapted for use with core and jacket bullets by using a composite density and
yield strength based on an area weighted function of these quantities for each cross-section of the



bullet. Note that the penetration does not depend on the diameter or shape of the eroding
projectile.

Differential penetration dP=(p,/0,)udL dv

where, p, is projectile density
0, is projectile yield strength
u is penetration velocity
dL is differential deformed projectile length
dv is differential projectile velocity

Penetration velocity u=[1/(1=y)][v-y(Vv +A)"]

where, y=(p/p,)"?
Ay=2(0—-0,)(1-v)/p
p. is target density
0, is target yield strength
v = instantaneous velocity

Differential deformed length
dL=L[A, /A, ]A elA A4

where, A=v+H(V+A)"
A, =vo+ (v +A))"”
A;=(0.-0,)/(y0,)
A4:ypp/[20p(l_y2)]
As=v+H(V+A)2-7V?
A6:VO+(VO2+AO)1/2_,YV02
v, = impact velocity

Hydrodynamic Termination Velocity

Hydrodynamic flow conditions cease at this velocity threshold, when the penetration
velocity equals the velocity of the rear portion of the projectile. Note that the following relation
is only valid where the strength of the projectile is greater than that of the target.

vir=[2(0,—0,)/p:r]" where, 0, is projectile yield strength

0, is target yield strength
p. is target density

Cranz’ Law Assumption

The temporary cavitation is proportional to the kinetic energy expended in each
differential increment of penetration, less losses to projectile deformation. In non-hydrodynamic



penetration, both the temporary and the permanent cavitations are proportional to the kinetic
energy expended (ie, no work is being done on the projectile).

Non-Hydrodynamic Penetration

After the termination of hydrodynamic penetration, the projectile continues to penetrate
as a rigid body. The rigid body penetration is proportional to the kinetic energy and inversely
proportional to the resistive forces acting on the deformed bullet. There are two principal sources
of resistive forces: a quasi-static material failure force and a dynamic drag force.

Tissue is not a fluid; it is a solid and has strength. The quasi-static material failure force is
that required to create a stress state in the target material sufficient to bring to yield or flow
condition. This crushing force is proportional to the flow stress of the target medium and the
diameter of the permanent crush cavity (which is a function of velocity and target material
strength).

Flow stress criterion: o~E/V > Ferusu = (11/4 ) 0, Dy
where, Dy Diameter of the crushed volume (hole)

The dynamic drag force is that required to overcome the inertial and viscous drag in the
failed target material and pass through. Because the Reynolds number is used to calculate the
drag coefficient, both inertial and viscous drag forces are represented in the drag coefficient. In
practice, the inertial drag forces dominate the problem. Even for small bullets at very low
(termination) velocities, the Reynolds number will be greater than 100, so the boundary layer is
small and laminar flow is not the dominant behavior. The model assumes that the drag over a
sphere can be used. For the range of Reynolds numbers involved, this is a reasonable
assumption. Alternatively, the drag on a hollow hemisphere (open downstream) might be better
still.

Drag Force: Forac = (TM/4)D2p (v?/2)Cp
where, D« Expanded diameter
Co=1(Re) Drag coefficient
Re=(m/4)(p/p)vDx Reynolds number
v Dynamic viscosity

The combined forces acting on the projectile can be resolved into the following
expression for penetration (integrated in terms of velocity):

Rigid-Body Penetration:
dP=dE/{(m/4)0.Ds?[1+( p.DCy,Vv*/(4Dy*0.)) ]}

where, dE = my ( vi°—v,*) / 2 Differential energy
My Retained projectile mass



Elastic Limit Velocity

Determines the lower limit of rigid body penetration based on the dynamic pressure of
the projectile (assumes a blunt shape). Elastic limit is the velocity at which the dynamic pressure
equals the yield stress of the target material.

vae =[2 0,/ p, ]

Permanent Cavity Diameter
From the Held equation for permanent crater dimensions in jet penetration:
Di=Dxv{p,/[20(1+1/y)]}"

Model Limitations and Known Issues

The Tate eroding rod model is quite sensitive to the initial length of the penetrator (since
all the equations are expressed as a ratio relative to the initial length). This is somewhat
problematic in that you must decide whether it makes sense to always measure the total
projectile length (the yield strength, retained mass and expanded diameter functions are all
derived from a deformed length function) or to estimate the total possible deformable length
(which for monolithics, such as the Barnes X-Bullet, is a fixed value less than half the total
length). Whatever approach is applied, it is imperative that the assumptions be clearly recognized
in developing the functions.

The method described does not account for the partitioning of the kinetic energy between
elastic and plastic strain, however, the Held equation is probably very accurate for all but the
velocities near the termination point (elastic limit velocity).



Appendix: Alternative Implementation for Universal Bullet Expansion

The following method for calculating the expanded diameter (D) as a function of the deformed
length (dL) may be used with reasonable success if specific data for bullet design behavior is not
known. The premise is that the deformed bullet can be treated incrementally as an equivalent
cylinder that is flattened into a coin of metal. Then this flat area is assumed to be equivalent to
the area of a hemispheric bullet mushroom and finally a presented (2-dimensional circular) area
is derived from the spherical area.

Cylindrical deformation assumption

Each differential cylindrical segment that is deformed can be described as a ring within a
total flattened coin of discrete nominal thickness. For any total deformed length, the area of the
deformed coin is given by the original cylindrical volume and the nominal deformed thickness
(assumed).

Hemispherical assumption

The presented (circular) area of the mushroom deformed projectile is !4 that of the
spherical area (i.e., the presented area is a circular 2-dimensional projection of the 3-dimensional
surface of a sphere). The spherical area is approximated by the area of the deformed cylindrical
length (see hereafter).

Undeformed cylinder D,L Diameter, length
Deformed coin A, h Area, thickness
Equivalence assumption A=A Cylindrical area same as spherical
Spherical area As=2T1r in terms of radius

As =T11/2 Dy in terms of expanded diameter
Volume = constant m4D*(L-dL)=Ah Cylindrical

m4 D*(L-dL)=Ash Spherical
m4D*(L-dL)=m/2D¢h

Expanded diameter Dx=[(D*(L-dL))/(2h)]"



