
Lecture 10
Penetration Mechanics I
(references are in lecture 11 notes)

1. Rigid Penetration of Targets

Projectiles may be rigid or deforming.  Rigid projectiles include
nails, hard bullets, and low velocity penetration of fluids and soils.
Deforming projectiles include bullets hitting hard armor,
warhead-launched fragments and the fragment simulating
projectiles (FSP), usually used as surrogate long rods designed to
penetrate heavy armor, and shaped charged jets (which are
produced by explosive collapse of ductile metal cones).

The physical processes happening in the projectiles are
separate from those occurring in the target, but are constrained
by the requirement that stress be continuous across the
projectile-target boundary and that displacements be compatible
at the boundary.

For example, figure 1 illustrates a Russian anti-tank projectile
designed to take advantage of rigid body penetration. It contains
a hard brittle WC core, a WHA cap designed to provide confining
stress at impact, and a steel shank to push the core.  U.S. anti-
tank projectiles are long rods of L/D=32 which are made from
depleted uranium.

Armor piercing bullets (AP) are also designed to achieve rigid
body penetration.  Figure 2 illustrates penetration data for an AP
(armor-piercing) bullet penetrating on armor aluminum alloy.
Bullets can be AP, ball (soft steel) or SLAP (saboted light armor
piercing).  Other examples of rigid body penetration include
punches , nails, and hardness indenter.

Rigid body penetration is well described by cavity expansion
models.  Let sc be the stress required to open a cavity from zero



radius.   It can be easily shown that the force required to drive
an indenter into a target is F=pr2sc regardless of the nose shape.

Figure 1  Soviet Penetrator

Figure 2



2 Steady Penetration (Thick targets)
Target elements may be considered relatively thin or thick.  A

relatively thick target is one in which the transient effects, due
to initial impact and either aerostation of the projectile or
breakout, are relatively small compared to the steady state.  In
practice, thickness is often measured in terms of projectile
diameters, and, in targets that are more than 5 diameters thick,
steady state effects usually dominate.  Viewed from this
perspective, thick target response also implies a projectile with a
high L/D ratio; otherwise, the target will not be perforated.
Consequently, thick target theory primarily applies to long rod
projectiles.

The simplest steady penetration equation is the Poncelet
equation
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Note that for a rod, this implies that penetration mainly depends
on rpL/rt.

Steady state penetration of long rods and shaped charge jets
is usually described by what has become known in the West as
“Tate theory” (Tate, [1]).  Consider a steady state penetration as
depicted in Figure 3.   Here, erosion takes place in the projectile
and in the target.



Figure 3  Steady state penetration.

We appeal to the argument that stresses on either side of the
penetrators/target boundary must be the same, otherwise the
boundary would accelerate.  The particle velocities must be the
same, too.  The result is the so-called “modified Bernoulli”
equation, which was assumed by Tate and has recently been
derived by Satapathy [2].
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In this equation, R represents the effective strength of the
target, and Y is the strength of the projectile.  An important
component of this theory is the notion that the projectile acts or
is a Taylor impact. It slows down, but the maximum stress that it
can support outside of the impact region is Y. So it decelerates
according to reverberating elastic waves, each of which carries
stress Y. The general solution to this equation when projectile
slow-down is ignored is:
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where f=2(R-Y)/rpV2

At large values of Tt, this is usually an adequate approximation.



A very attractive feature of this solution is that the target is
described by only two parameters: density and effective
strength, R .

The target resistance, R , is equivalent to the stress required
to open a cavity in a target from zero radius.  The solution for
cylindrical cavities was first published in a famous article by
Nobel Laureates Bishop, Hill, and Mott [3].  In an elastic plastic
material, the solution is:
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Cavity expansion solutions have been worked out for many
material behavior modes and for ductile and brittle materials.
See Satapathy and Bless, [4], for a general treatment.  Cavity
expansion can also be used to compute the rate of crater growth.
[See, for example, Bless et al. [5].

Cavity expansion can also be used to compute friction effects.
For the elastic plastic solution the force required to drive a
conical indenter becomes
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Where m is the friction coefficient and q is the nose half
angle.  Hence, sharp projectiles can be less effective
penetrators.

The Tate equation is often used with values of R  that are
found empirically to give good matches to experiments.  The
technique is often expanded to model complex targets, even
though the target response may not involve simple cavity
expansion.  These procedures must be used with caution. 



There are many special cases to the Tate solution, for
different quadrants in the Taylor diagram, as discussed, for
example, in Tate [1].  The general form of the solution to the
Tate equation, which applies to intermediate to high Taylor
numbers, is shown in Figure 4.
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Figure 4  Tate equation solution-S curve.

This S-shaped curve shape occurs for most combinations of
projectile and target materials of interest to the warhead
designer.  There is a threshold velocity where penetration begins.
It is given approximately by:
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Threshold velocities are relatively low.  For most standard
penetrators striking structural metals, they are below 1 km/s.
Figure 4gives the curve for long tungsten rods penetration armor
steel.

Above the threshold velocity, penetration increases rapidly.
However, eventually the projectile begins to deform, and then
penetration begins to level off.  In the limit of very high velocity
(the upper right corner of the Taylor diagram), penetration



approaches the so-called “hydrodynamic limit.”  The hydrodynamic
limit is given by

P = Lsh = L rP / rt (8)

The penetration at the hydrodynamic limit depends only on the
density ratio and length of the projectile.  It is important,
however, not to generalize from this formula, because
hydrodynamic penetration is seldom achieved in practice.  In the
region where strength is important, penetration does not usually
scale as the square root of penetrator density.  Also, penetration
always increases as V Æ • , contrary to the notion of an
asymptote.

At high velocities there is an overshot of the hydrodynamic
limit due to “secondary penetration.  There are two causes of
secondary penetration.  One is due to a second impact of debris in
the crater.  According to Tate theory penetrator material that
interacts with the penetration front has velocity, 2u-v.  This is >0
(into the target) if rp>rt, and it can reset in a second impact with
augmented penetration [2].  The other cause of secondary
penetration is inertia in the target at the point where the
penetrator is “used up”.

For very strong projectiles and relatively weak targets, it is
possible to substantially overshoot the hydrodynamic limit [3].
Unfortunately, there is no general formula for when projectile
yielding occurs.  In practice, bending of projectiles in targets
often occurs before gross plastic flow.  However, the rule implied
by the Tate solution is approximately valid: projectiles remain
rigid when

V <
2(Y - R)

rt
. (9)



In more recent work, penetration by long rods is often
represented by the so-called “Odermat” equation.

P / L = a exp -(V0 / V)2[ ] (10)

This is a very useful form for empirically fitting data.  Figure 6
shows long rod data for steel and titanium penetration along with
the Odermat parameters.  Several authors have attempted to
reify the Odermat parameters (for example, Gooch et al., [5]),
but it is probably best to regard them as essentially fitting
parameters for an empirical equation.

An improved version that takes scaling into account was
purposed in [4]:
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where the values of the empirical parameters are given in Table 1.

Table 1.  Fitting parameters for generalized Odermat equation

There are several compendia of target penetration data by
long rods.  The most widely used has been compiled by Southwest
Research Institute (Anderson et al., [6]); it is available on
diskette.  Figure 5 is drawn from the compendium.

Parameter L/D≥30 WHA rods
A 1.7

b (km/s) 1.2
c 2.9

K (mm) 3.5



Figure 5.  Penetration (P/L) of L/D=10 tungsten alloy rods into materials
of two densities, fitted with Odermat equation ( oVb ≡ ).  Velocity in m/s.[6]


