/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// Restrictions: /// By making use of the Software for military purposes, you choose to make /// a Bunny unhappy. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtx_quaternion /// @file glm/gtx/quaternion.inl /// @date 2005-12-21 / 2011-06-07 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #include <limits> #include "../gtc/constants.hpp" namespace glm { template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> cross ( tvec3<T, P> const & v, tquat<T, P> const & q ) { return inverse(q) * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> cross ( tquat<T, P> const & q, tvec3<T, P> const & v ) { return q * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> squad ( tquat<T, P> const & q1, tquat<T, P> const & q2, tquat<T, P> const & s1, tquat<T, P> const & s2, T const & h) { return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> intermediate ( tquat<T, P> const & prev, tquat<T, P> const & curr, tquat<T, P> const & next ) { tquat<T, P> invQuat = inverse(curr); return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast<T>(-4)) * curr; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> exp ( tquat<T, P> const & q ) { tvec3<T, P> u(q.x, q.y, q.z); T Angle = glm::length(u); if (Angle < epsilon<T>()) return tquat<T, P>(); tvec3<T, P> v(u / Angle); return tquat<T, P>(cos(Angle), sin(Angle) * v); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> log ( tquat<T, P> const & q ) { tvec3<T, P> u(q.x, q.y, q.z); T Vec3Len = length(u); if (Vec3Len < epsilon<T>()) { if(q.w > static_cast<T>(0)) return tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0)); else if(q.w < static_cast<T>(0)) return tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0)); else return tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity()); } else { T QuatLen = sqrt(Vec3Len * Vec3Len + q.w * q.w); T t = atan(Vec3Len, T(q.w)) / Vec3Len; return tquat<T, P>(log(QuatLen), t * q.x, t * q.y, t * q.z); } } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> pow ( tquat<T, P> const & x, T const & y ) { if(abs(x.w) > (static_cast<T>(1) - epsilon<T>())) return x; T Angle = acos(y); T NewAngle = Angle * y; T Div = sin(NewAngle) / sin(Angle); return tquat<T, P>( cos(NewAngle), x.x * Div, x.y * Div, x.z * Div); } //template <typename T, precision P> //GLM_FUNC_QUALIFIER tquat<T, P> sqrt //( // tquat<T, P> const & q //) //{ // T q0 = static_cast<T>(1) - dot(q, q); // return T(2) * (T(1) + q0) * q; //} template <typename T, precision P> GLM_FUNC_QUALIFIER tvec3<T, P> rotate ( tquat<T, P> const & q, tvec3<T, P> const & v ) { return q * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER tvec4<T, P> rotate ( tquat<T, P> const & q, tvec4<T, P> const & v ) { return q * v; } template <typename T, precision P> GLM_FUNC_QUALIFIER T extractRealComponent ( tquat<T, P> const & q ) { T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z; if(w < T(0)) return T(0); else return -sqrt(w); } template <typename T, precision P> GLM_FUNC_QUALIFIER T length2 ( tquat<T, P> const & q ) { return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w; } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> shortMix ( tquat<T, P> const & x, tquat<T, P> const & y, T const & a ) { if(a <= static_cast<T>(0)) return x; if(a >= static_cast<T>(1)) return y; T fCos = dot(x, y); tquat<T, P> y2(y); //BUG!!! tquat<T> y2; if(fCos < static_cast<T>(0)) { y2 = -y; fCos = -fCos; } //if(fCos > 1.0f) // problem T k0, k1; if(fCos > (static_cast<T>(1) - epsilon<T>())) { k0 = static_cast<T>(1) - a; k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a; } else { T fSin = sqrt(T(1) - fCos * fCos); T fAngle = atan(fSin, fCos); T fOneOverSin = static_cast<T>(1) / fSin; k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin; k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin; } return tquat<T, P>( k0 * x.w + k1 * y2.w, k0 * x.x + k1 * y2.x, k0 * x.y + k1 * y2.y, k0 * x.z + k1 * y2.z); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> fastMix ( tquat<T, P> const & x, tquat<T, P> const & y, T const & a ) { return glm::normalize(x * (static_cast<T>(1) - a) + (y * a)); } template <typename T, precision P> GLM_FUNC_QUALIFIER tquat<T, P> rotation ( tvec3<T, P> const & orig, tvec3<T, P> const & dest ) { T cosTheta = dot(orig, dest); tvec3<T, P> rotationAxis; if(cosTheta < static_cast<T>(-1) + epsilon<T>()) { // special case when vectors in opposite directions : // there is no "ideal" rotation axis // So guess one; any will do as long as it's perpendicular to start // This implementation favors a rotation around the Up axis (Y), // since it's often what you want to do. rotationAxis = cross(tvec3<T, P>(0, 0, 1), orig); if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again! rotationAxis = cross(tvec3<T, P>(1, 0, 0), orig); rotationAxis = normalize(rotationAxis); return angleAxis(pi<T>(), rotationAxis); } // Implementation from Stan Melax's Game Programming Gems 1 article rotationAxis = cross(orig, dest); T s = sqrt((T(1) + cosTheta) * static_cast<T>(2)); T invs = static_cast<T>(1) / s; return tquat<T, P>( s * static_cast<T>(0.5f), rotationAxis.x * invs, rotationAxis.y * invs, rotationAxis.z * invs); } }//namespace glm