/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// Restrictions: /// By making use of the Software for military purposes, you choose to make /// a Bunny unhappy. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref gtc_bitfield /// @file glm/gtc/bitfield.inl /// @date 2011-10-14 / 2012-01-25 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// namespace glm{ namespace detail { template <typename PARAM, typename RET> GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y); template <typename PARAM, typename RET> GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z); template <typename PARAM, typename RET> GLM_FUNC_DECL RET bitfieldInterleave(PARAM x, PARAM y, PARAM z, PARAM w); template <> GLM_FUNC_QUALIFIER glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y) { glm::uint16 REG1(x); glm::uint16 REG2(y); REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F); REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F); REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333); REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333); REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555); REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555); return REG1 | (REG2 << 1); } template <> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y) { glm::uint32 REG1(x); glm::uint32 REG2(y); REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF); REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF); REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F); REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F); REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333); REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333); REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555); REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555); return REG1 | (REG2 << 1); } template <> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y) { glm::uint64 REG1(x); glm::uint64 REG2(y); REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); return REG1 | (REG2 << 1); } template <> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z) { glm::uint32 REG1(x); glm::uint32 REG2(y); glm::uint32 REG3(z); REG1 = ((REG1 << 16) | REG1) & glm::uint32(0x00FF0000FF0000FF); REG2 = ((REG2 << 16) | REG2) & glm::uint32(0x00FF0000FF0000FF); REG3 = ((REG3 << 16) | REG3) & glm::uint32(0x00FF0000FF0000FF); REG1 = ((REG1 << 8) | REG1) & glm::uint32(0xF00F00F00F00F00F); REG2 = ((REG2 << 8) | REG2) & glm::uint32(0xF00F00F00F00F00F); REG3 = ((REG3 << 8) | REG3) & glm::uint32(0xF00F00F00F00F00F); REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x30C30C30C30C30C3); REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x30C30C30C30C30C3); REG3 = ((REG3 << 4) | REG3) & glm::uint32(0x30C30C30C30C30C3); REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x9249249249249249); REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x9249249249249249); REG3 = ((REG3 << 2) | REG3) & glm::uint32(0x9249249249249249); return REG1 | (REG2 << 1) | (REG3 << 2); } template <> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F); REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F); REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F); REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3); REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3); REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3); REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249); REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249); REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249); return REG1 | (REG2 << 1) | (REG3 << 2); } template <> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y, glm::uint32 z) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); REG1 = ((REG1 << 32) | REG1) & glm::uint64(0xFFFF00000000FFFF); REG2 = ((REG2 << 32) | REG2) & glm::uint64(0xFFFF00000000FFFF); REG3 = ((REG3 << 32) | REG3) & glm::uint64(0xFFFF00000000FFFF); REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x00FF0000FF0000FF); REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x00FF0000FF0000FF); REG3 = ((REG3 << 16) | REG3) & glm::uint64(0x00FF0000FF0000FF); REG1 = ((REG1 << 8) | REG1) & glm::uint64(0xF00F00F00F00F00F); REG2 = ((REG2 << 8) | REG2) & glm::uint64(0xF00F00F00F00F00F); REG3 = ((REG3 << 8) | REG3) & glm::uint64(0xF00F00F00F00F00F); REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x30C30C30C30C30C3); REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x30C30C30C30C30C3); REG3 = ((REG3 << 4) | REG3) & glm::uint64(0x30C30C30C30C30C3); REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x9249249249249249); REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x9249249249249249); REG3 = ((REG3 << 2) | REG3) & glm::uint64(0x9249249249249249); return REG1 | (REG2 << 1) | (REG3 << 2); } template <> GLM_FUNC_QUALIFIER glm::uint32 bitfieldInterleave(glm::uint8 x, glm::uint8 y, glm::uint8 z, glm::uint8 w) { glm::uint32 REG1(x); glm::uint32 REG2(y); glm::uint32 REG3(z); glm::uint32 REG4(w); REG1 = ((REG1 << 12) | REG1) & glm::uint32(0x000F000F000F000F); REG2 = ((REG2 << 12) | REG2) & glm::uint32(0x000F000F000F000F); REG3 = ((REG3 << 12) | REG3) & glm::uint32(0x000F000F000F000F); REG4 = ((REG4 << 12) | REG4) & glm::uint32(0x000F000F000F000F); REG1 = ((REG1 << 6) | REG1) & glm::uint32(0x0303030303030303); REG2 = ((REG2 << 6) | REG2) & glm::uint32(0x0303030303030303); REG3 = ((REG3 << 6) | REG3) & glm::uint32(0x0303030303030303); REG4 = ((REG4 << 6) | REG4) & glm::uint32(0x0303030303030303); REG1 = ((REG1 << 3) | REG1) & glm::uint32(0x1111111111111111); REG2 = ((REG2 << 3) | REG2) & glm::uint32(0x1111111111111111); REG3 = ((REG3 << 3) | REG3) & glm::uint32(0x1111111111111111); REG4 = ((REG4 << 3) | REG4) & glm::uint32(0x1111111111111111); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } template <> GLM_FUNC_QUALIFIER glm::uint64 bitfieldInterleave(glm::uint16 x, glm::uint16 y, glm::uint16 z, glm::uint16 w) { glm::uint64 REG1(x); glm::uint64 REG2(y); glm::uint64 REG3(z); glm::uint64 REG4(w); REG1 = ((REG1 << 24) | REG1) & glm::uint64(0x000000FF000000FF); REG2 = ((REG2 << 24) | REG2) & glm::uint64(0x000000FF000000FF); REG3 = ((REG3 << 24) | REG3) & glm::uint64(0x000000FF000000FF); REG4 = ((REG4 << 24) | REG4) & glm::uint64(0x000000FF000000FF); REG1 = ((REG1 << 12) | REG1) & glm::uint64(0x000F000F000F000F); REG2 = ((REG2 << 12) | REG2) & glm::uint64(0x000F000F000F000F); REG3 = ((REG3 << 12) | REG3) & glm::uint64(0x000F000F000F000F); REG4 = ((REG4 << 12) | REG4) & glm::uint64(0x000F000F000F000F); REG1 = ((REG1 << 6) | REG1) & glm::uint64(0x0303030303030303); REG2 = ((REG2 << 6) | REG2) & glm::uint64(0x0303030303030303); REG3 = ((REG3 << 6) | REG3) & glm::uint64(0x0303030303030303); REG4 = ((REG4 << 6) | REG4) & glm::uint64(0x0303030303030303); REG1 = ((REG1 << 3) | REG1) & glm::uint64(0x1111111111111111); REG2 = ((REG2 << 3) | REG2) & glm::uint64(0x1111111111111111); REG3 = ((REG3 << 3) | REG3) & glm::uint64(0x1111111111111111); REG4 = ((REG4 << 3) | REG4) & glm::uint64(0x1111111111111111); return REG1 | (REG2 << 1) | (REG3 << 2) | (REG4 << 3); } }//namespace detail template <typename genIUType> GLM_FUNC_QUALIFIER genIUType mask(genIUType Bits) { GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'mask' accepts only integer values"); return Bits >= sizeof(genIUType) * 8 ? ~static_cast<genIUType>(0) : (static_cast<genIUType>(1) << Bits) - static_cast<genIUType>(1); } template <typename T, precision P, template <typename, precision> class vecIUType> GLM_FUNC_QUALIFIER vecIUType<T, P> mask(vecIUType<T, P> const & v) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'mask' accepts only integer values"); return detail::functor1<T, T, P, vecIUType>::call(mask, v); } template <typename genIType> GLM_FUNC_QUALIFIER genIType bitfieldRotateRight(genIType In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateRight' accepts only integer values"); int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); return (In << static_cast<genIType>(Shift)) | (In >> static_cast<genIType>(BitSize - Shift)); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateRight(vecType<T, P> const & In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateRight' accepts only integer values"); int const BitSize = static_cast<int>(sizeof(T) * 8); return (In << static_cast<T>(Shift)) | (In >> static_cast<T>(BitSize - Shift)); } template <typename genIType> GLM_FUNC_QUALIFIER genIType bitfieldRotateLeft(genIType In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits<genIType>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); int const BitSize = static_cast<genIType>(sizeof(genIType) * 8); return (In >> static_cast<genIType>(Shift)) | (In << static_cast<genIType>(BitSize - Shift)); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> bitfieldRotateLeft(vecType<T, P> const & In, int Shift) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldRotateLeft' accepts only integer values"); int const BitSize = static_cast<int>(sizeof(T) * 8); return (In >> static_cast<T>(Shift)) | (In << static_cast<T>(BitSize - Shift)); } template <typename genIUType> GLM_FUNC_QUALIFIER genIUType bitfieldFillOne(genIUType Value, int FirstBit, int BitCount) { return Value | static_cast<genIUType>(mask(BitCount) << FirstBit); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillOne(vecType<T, P> const & Value, int FirstBit, int BitCount) { return Value | static_cast<T>(mask(BitCount) << FirstBit); } template <typename genIUType> GLM_FUNC_QUALIFIER genIUType bitfieldFillZero(genIUType Value, int FirstBit, int BitCount) { return Value & static_cast<genIUType>(~(mask(BitCount) << FirstBit)); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> bitfieldFillZero(vecType<T, P> const & Value, int FirstBit, int BitCount) { return Value & static_cast<T>(~(mask(BitCount) << FirstBit)); } GLM_FUNC_QUALIFIER int16 bitfieldInterleave(int8 x, int8 y) { union sign8 { int8 i; uint8 u; } sign_x, sign_y; union sign16 { int16 i; uint16 u; } result; sign_x.i = x; sign_y.i = y; result.u = bitfieldInterleave(sign_x.u, sign_y.u); return result.i; } GLM_FUNC_QUALIFIER uint16 bitfieldInterleave(uint8 x, uint8 y) { return detail::bitfieldInterleave<uint8, uint16>(x, y); } GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int16 x, int16 y) { union sign16 { int16 i; uint16 u; } sign_x, sign_y; union sign32 { int32 i; uint32 u; } result; sign_x.i = x; sign_y.i = y; result.u = bitfieldInterleave(sign_x.u, sign_y.u); return result.i; } GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint16 x, uint16 y) { return detail::bitfieldInterleave<uint16, uint32>(x, y); } GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y) { union sign32 { int32 i; uint32 u; } sign_x, sign_y; union sign64 { int64 i; uint64 u; } result; sign_x.i = x; sign_y.i = y; result.u = bitfieldInterleave(sign_x.u, sign_y.u); return result.i; } GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y) { return detail::bitfieldInterleave<uint32, uint64>(x, y); } GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z) { union sign8 { int8 i; uint8 u; } sign_x, sign_y, sign_z; union sign32 { int32 i; uint32 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); return result.i; } GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z) { return detail::bitfieldInterleave<uint8, uint32>(x, y, z); } GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z) { union sign16 { int16 i; uint16 u; } sign_x, sign_y, sign_z; union sign64 { int64 i; uint64 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); return result.i; } GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z) { return detail::bitfieldInterleave<uint32, uint64>(x, y, z); } GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int32 x, int32 y, int32 z) { union sign16 { int32 i; uint32 u; } sign_x, sign_y, sign_z; union sign64 { int64 i; uint64 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u); return result.i; } GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint32 x, uint32 y, uint32 z) { return detail::bitfieldInterleave<uint32, uint64>(x, y, z); } GLM_FUNC_QUALIFIER int32 bitfieldInterleave(int8 x, int8 y, int8 z, int8 w) { union sign8 { int8 i; uint8 u; } sign_x, sign_y, sign_z, sign_w; union sign32 { int32 i; uint32 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; sign_w.i = w; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); return result.i; } GLM_FUNC_QUALIFIER uint32 bitfieldInterleave(uint8 x, uint8 y, uint8 z, uint8 w) { return detail::bitfieldInterleave<uint8, uint32>(x, y, z, w); } GLM_FUNC_QUALIFIER int64 bitfieldInterleave(int16 x, int16 y, int16 z, int16 w) { union sign16 { int16 i; uint16 u; } sign_x, sign_y, sign_z, sign_w; union sign64 { int64 i; uint64 u; } result; sign_x.i = x; sign_y.i = y; sign_z.i = z; sign_w.i = w; result.u = bitfieldInterleave(sign_x.u, sign_y.u, sign_z.u, sign_w.u); return result.i; } GLM_FUNC_QUALIFIER uint64 bitfieldInterleave(uint16 x, uint16 y, uint16 z, uint16 w) { return detail::bitfieldInterleave<uint16, uint64>(x, y, z, w); } }//namespace glm