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1.   Background 

The penetration equations that describe the behavior of a long rod that erodes while it penetrates 
at high velocity were formulated independently by Alekseevskii [1] and Täte [2] in the mid- 
1960s and are given by 

LV--YlpR (rod deceleration), (1) 

-pR(V-U)2+Y = -pTU
2+R (interface stress balance), (2) 

V = U-L (erosion kinematics), and (3) 

P = U (penetration definition). (4) 

In these equations, Vis the rod velocity, C/is the penetration rate, P is the rod penetration, and L 
is the rod length, all functions of time. The constant parameters include the rod strength Y, the 
target resistance R, and the target-to-rod density ratio y = pTlpR. The dots signify time 
differentiation. These equations have typically been integrated numerically to achieve a solution. 
A decade ago, Walters and Segletes [3] obtained an exact solution to these equations. However, 
the solution was not expressed in terms of the primitive variables that appear in the original 
equations, but rather in terms of an oblique transformation variable that was presented without 
explanation. Furthermore, little attempt was made to collate variables into an orderly fashion, 
thus leaving an incomplete sense for the term groupings that actually drive the solution. While 
mathematically rigorous, the solution was somewhat cumbersome to use. 

This equation set has been re-examined, in search of improvements and extensions to the 
solution method. Several improvements to the solution approach are offered herein to improve 
the solution efficiency. A primary hindrance of the original solution was in the evaluation of the 
rod velocity as a function of time. While this hindrance remains with the current approach, it 
may be circumvented by choosing an independent variable other than time, in the evaluation of 
rod erosion. Indeed, it is often more useful to express the solution in terms of, for example, rod 
velocity, rather than the canonical function-of-time solution. And while this alternative was 
available to the original solution [3], the presentation of the original solution perhaps left the 
false impression with the reader that the numerical evaluation of V(t) was a necessary 
intermediate step in the solution of L(V) and P(V). 

Though the governing equations (l)-(4) pertain only to the time during which penetration and 
erosion simultaneously occur, extensions to the original solution [3] are herein provided for the 
subsequent stage of rigid-body penetration or rigid-target rod erosion. In addition to the general- 
case solution to the penetration problem being addressed, several special-case conditions, 
including the cases for which R = Fand /% = pt, respectively, will also be solved. Not addressed 
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herein, however, because of their simplicity, are three special cases for which R = 0, Y= 0, and 
R = Y= 0, respectively. The present method, described subsequently, can be used to describe the 
R = 0 solution up until the moment that rigid-body penetration commences. Subsequent 
behavior, however, will be governed by Poncelet flow. In the case of both Y=0 and R = Y= 0, 
the solution becomes trivial in that the rod velocity remains constant until the rod is totally 
consumed, at which point the event ceases. The penetration velocity and rod erosion rate also 
remain constant for these cases, in accordance with equations (2) and (3). For the case of 
R = Y= 0, the steady-state erosion rates are governed by the Bernoulli equation. 

2.   Closed Form Solution for L{ V) 

Without delay, we present the solution to the rod erosion equations, which is valid for all cases 
(special cases [R = Y, pn = pi] and the general case): 

L_ $H IVI I  _  I IV7VJ / W     I         1/  I 

(5) 
jJrtJ-L 
-?= — exp 

V0L0-VL 
2YlpR 

where the "0" subscripts signify conditions at the onset of the penetration event. It is worthy to 
note that while -L is the rate of rod erosion, the term -JyU would be the rate of rod erosion 

were the case hydrodynamic (i.e., where R=Y=0). 

The presentation of the solution, given by equation (5), is obtained by solving equation (1) forZ 
and differentiating with respect to time; then, using equations (2) and (3) to obtain dL/dt in terms 
of rod velocity V; and finally eliminating dL/dt from the two resulting equations, which gives 
d2V/dt2 in terms of dV/dt and V. The particular expression for dL/dt varies depending on 
whether the special or general problem cases are considered, and this will affect the form of the 
governing equation, as will be shown. The resulting equation is integrated to provide dV/dt in 
terms of V. While the traditional technique is to separate variables and attempt to integrate again 
to obtain V(t\ as was done by Walters and Segletes [3], this step is not necessary to obtain L(V). 
Equation (1) provides a direct algebraic link between L and dV/dt, and thereby allows dV/dt to be 
eliminated in favor of L, immediately following the first integration. The result is L(V), which is 
a desirable way to express the result, as an alternative to Uf). 

When special- and general-case problems are considered, the solutions, at first glance, take on 
different appearances. However, equation (5) was discerned from those solutions (given here, 
expressed in terms of a single independent variable, V, the rod velocity) by realizing that the 
various grouping of Fterms in the various L{V) solutions all satisfy the elegant form of 
equation (5): 



R = Y: 

r = l: 

Governing Equation: 

= exp PR lr 
2Y(l + fi) 

(v0
2-v2) 

(6) 

(7) 

Governing Equation:     —+  

,(H 
exp 

V2=-—V, 
PR 

-PR 

47 
(v0

2-v2) 

(8) 

(9) 

General case: 

Governing Equation:   —(-/V + J/V2 +2(R-Y)(l-y)/pR) V
2 = -—V, 

l~rv ; PR 
(10) 

v i+^+2jR-Y)(i-rV(rPRV2)s 

[Vo' \+4\+XR-Y)(i-Y)l(yPRVZ), 

ilH 
exp -pR4r 

27(l+v9) 
(11) 

V2- 4\+HR-m-rWpRV!)-4r  J/t 4\+XR-m-y)i<ypRv
2)-4r 

i-V? i-Vr 

Equations (7), (9), and (11) have been organized and presented in a manner to demonstrate the 
functional linkage between the special- and general-case solutions. For example, when either 
R = Y or y= 1, the extended square-root terms of equation (11) become unity, leading to the 
simpler (F/iTo) monomial and (V0

2 - V2) exponential terms of equations (9) and (7). When /= 1, 
the leading multiplier on the exponential term in equation (11) matches that of equation (9). And 
when R = Y, the exponent on the monomial becomes zero, leading to the form of equation (7). 
While the forms for U(V) and L(V), obtainable from equations (2) and/or (3), are vastly 
different in appearance for the special and general cases, the solutions forL(V) nonetheless all 
share a common structured form described by equation (S). 



3.   Choice of Model Variable 

While equations (6), (8) and (10) of the previous section choose to cast the problem in terms of 
rod velocity and its derivatives, this is by no means the only option. Through equations (2) and 
(3), Fmay be algebraically expressed in terms ofUorL. Therefore, instead of expressing rod 
length as L = L(V) in equation (11), alternate expressions of the result, given as L = L(U) or 
L = L(L) may be obtained as: 

L_ 
fU   l + J\ + 2(R-Y)/(ypRU

2) 

Uo'l + ^l + 2(R-Y)/(ypRU
2)> 

ÜH 
exp -pRJrQ+Jr) 

2Y 

(12) 
f 
u2  Jl + 2(R-Y)/(ypRU

2
0) + Jy~    u2  i]\ + 2(R-Y)/(ypRU

2)+fi 
1 + Jy \ + y[y 

^ 

( . L   l + ,jl-2(R-Y)/(pRL
2) 

Lo'\ + 4\-2(R-Y)l{pRL\) 

i(H 
exp -pR(i+Jr) 

2Yfi 

'      4\-2(R-Y)l(pR%)+4J    /a  TJ1-2(R-Y)/(PRL
2
)+^ 

(13) 

i+Vr 
-L2 

i+Jf J J 

In the derivation of these and subsequent relations, there are several closely related, algebraic 
expressions that can facilitate expression and/or transformation of results. These include: 

tfu-L= [fiv+ylrv2 +2(i-r)(R-Y)/PR\ /(i+Vr); 

4fu+L= [fiv-yjrv2 +2(i-r)(R-Y)/PR] /(i-Vr); 

L       =   [   yV-4YV2+2(\-y)(R-Y)lpR\ l(\-y) ; 

U     =   [   v-i yV2+2(l-y)(R-Y)/p} "]/(l-r) 

(14) 

(15) 

(16) 

(17) 



4.   Model-Variable Transformation 

The complications of having the model variable V, U, or L under the square root for the general 
case of equation (11), (12), or (13), respectively, may be circumvented with the selection of a 
mathematically more "natural" variable than the velocity V, U, or L. Looking to equation (5) 
for guidance, success has been found in 

o = 4YU-L 
(18) 

where the constant S is defined as 2{R - Y)lpR. The variable <D, proportional to the expression of 
equation (14), is always nonnegative and follows somewhat the trend of rod velocity F(it 
actually equals V/^J[L\ when y= 1). Not surprisingly, O is also proportional to Vz , which was 

the key transformation variable employed in the original derivation [3]. The key benefit to using 
the O transformation is that L and U, rather than requiring square root terms as did 
equations (16) and (17) when expressed in V, may be expressed in more simply in terms of 3> as 

L = - <D + sgn(E)— (19) 

and 

*•{§{•-**£. (20) 

where the Signum function, sgn(jc), denotes the sign of the argument [sgn(x) = x/\x\ for x *■ 0, and 
sgn(x) = 0 for x = 0], in this case the sign of E. The rod velocity, V, may also be obtained 
directly, by substituting these expressions into equation (3): 

V = vl^i 
2v7 

(^ + l)0>+sgn(S) (.-Jr-i) 
<D 

(21) 

When O is used in preference to rod velocity Fas the independent variable, the governing 
equation (5) leads to the following expression: 

0 \rfj-*) 
TiT exP 4v7 

R 
-1 (■Jr+Wo 

(v9-i) 
*« J 

\ f 
iff+W (Vr-i)l 

<D2 (22) 

With minimal rearrangement, the variable O can be made to appear always in squared form. It is 
for this reason that Walters and Segletes [3] selected their transformation variable, z, 



proportional to €>2. We will do the same here, though with a different proportionality constant, 
so that 

r = (D2 Vr+i 
\fy 

(23) 

By so doing, the expression for residual rod length, equation (22), becomes 

A=(WZo)^(Hexp- VR 
4Vr 

R 
[(20±1/Z0)-(Z±1/Z)] (24) 

where the conditional operators in equation (24) are chosen as "+" for y> 1 and "-" for y< 1, 
and 

Vz~ = 
[|Vr-i|(Vr+i)3£2J 

(25) 

Like equation (11), the result given by equation (24) expresses rod length in terms of a single 
independent variable, in this case z. The advantage of equation (24) over equation (11) is in 
removing the model variable from under a radical. The choice of a proportionality constant 
different than that used in the prior work [3], when defining z, provides a result that reduces the 
number of constant parameters in the exponent. More importantly, however, the appearance in 
the exponential of the model variable in the specific form of (z ± l/z) will greatly expedite the 
evaluation of rod penetration, as will be subsequently shown. 

5.   Penetration 

The evaluation of penetration by way of integrating equation (4) may be transformed with 
equation (1) to give 

t ,    V%   T 

P = \Udt = ~)f-UdV. 

The particular functional forms for L and t/will govern the form of the solution. 

(26) 

5.1   R=Y 

Penetration may be directly evaluated in closed form for the simple case of R=Y, wherein L is 
given by equation (7), and Uis proportional to ^throughout the penetration event. In this case, 



the final penetration (given by Pf as U and V approach zero) is 

R = Y: P, 
'   Tr 

1-exp PR fr 
27(1 + fi) ° 

(27) 

5.2 y= i 

For the y = 1 special case, where the penetration velocity U is given algebraically by 
U= (V- 2,/V)/2, the penetration may be calculated, per equation (26), in closed form if the value 
of the V exponent in equation (9), given as (R - Y) IY, is an even integer (i.e., RIY is an odd 
integer). For these limited cases, integration by parts permits the problem reduction according to 
one of the following two recursion rules: 

\{V2YebrldV2=   \v2Yebr7-   -\{Vzy-lebvldV2 , (a>0); (28a) 

Uv2)aebrldV2=   —L-(y2y+1ebr* -f(F2r+1/rfF2  ,(fl<0);      (28b) 
J (a + 1) (« + !) 

which is repeated until the reduced exponent on V2 becomes zero, whereupon the process 
terminates with the rule 

jebyldV2=   ebrI/b. (29) 

For other cases without the appropriate integral exponents, a recursion-type solution, with 
tabulation is still plausible, in theory. The recursion rule would be applied./ times until the 
exponent a ± j falls between zero and unity. At that point, a tabulated solution for values of a 
between zero and unity (along the lines of the Gamma-function solution) is used to close out the 
integration. Wim clever use of velocity-normalization, the integral from Vf to V2 can be broken 

into two integrals, each evaluated between 0 and 1. Unfortunately, the integral remains a 
function of two parameters, a and b. And while tabulating a function of one parameter can be an 
efficient solution technique, tabulating solutions for functions of two real parameters quickly 
become more cumbersome than a series expansion or numerically integrated solution. 

As an alternative then, the penetration for the y = 1 special case may be evaluated by way of 
series solution in terms of velocity. One way to achieve this is to express the penetration as 

y=l: 2>, 
7-0 4Y y=o AY 

(30) 

and match the derivative of P to the terms of U, given by U= (V- Y.IV)I2. With this approach, 
one obtains a<> = -1, ax = 2/(1 + /^Z/4F), and for the remaining terms, q, = - at/VO' + PsZlAY). 
Note that /%E/4F equals {RIY -1)/2. While the series terms alternate in sign, the fact thaty is in 



the denominator of the recursion formula indicates that the rate of convergence for this solution 
approach should be similar to that for the exponential series. To confirm that this expression 
approaches the proper form for the special case when R=Y (when Z equals zero), the recursion 
relation is observed to then approach the series definition for the exponential, 
1 - 2exp[-V2/AK]. This series takes on the value 1 - 2(Lf/L0) when evaluated at V0, and -1 
when evaluated at V= 0. Here, Lfis the terminal length of the rod. The final penetration, 
therefore, becomes L0 - Lf, as expected for R=Y and y= 1. 

Perhaps a more forthright approach for the evaluation of penetration for the y= 1 special case 
(and less prone to the precision problems of evaluating an alternating series) is to directly 
integrate LUdV, per equation (26), by initially expanding the exponential term of L into a series, 

L_ TT        l 

U =— exp 
AY 

V — 
\ 2Y 

\VoJ 1! 2! 
(31) 

and integrating term by term to the desired level of precision. As before, £ = 2{R - Y)/pR. By 
integrating this expression with respect to V, per equation (26), one may obtain 

y=l: 

= exp 
AY 

00 1 j- 
PR* 

AY 

j + AY 

'PXV' 
AY 

r2\4Y 

. V2 , 

oo     1 

JL-- 
J- 

AY 
( - irt V 

j + 
PR* 

AY 

AY 
(32) 

5.3   General Case 

In evaluating the penetration for the general case, the solution becomes more complicated but 
can nonetheless be made more efficient compared to the method presented in the original 
solution [3]. Efficiencies are achieved in several ways. The use of rod length L in the form of 
equation (24) retains integer-powered polynomials in the exponential term. As such, the series 
expansion of the exponential, by which the integrals are evaluated, does not require the 
evaluation of fractionally powered polynomial expansions, as did the original method [3]. But 
more importantly, by having transformed L into a form where the exponential argument is of the 
explicit form c(z ± 1/z), a method may be used to expand the exponential in an efficient way, 
reducing the expansion of the exponential to power n from a cost of (n + 1)(« + 2)/2 monomial 
evaluations in z, to one of 2« + 1 evaluations in z. 

The equation describing the penetration, equation (26), may be reorganized to obtain an 
expression in terms of the transformation variable, z, 

P=\Udt=\- dz   =   —r-  -—[/-—dz. 
Hv dz V0;L0   dz 

(33) 



Using equations (21) and (23), the rod velocity is expressible in terms of z as 

V = (Ms')"4 

2jr 
(4f+1)"!VI+sgn[(y-l)2] 

\Tr- 
|l/2 

4~z 

so that dV/dz may be computed as 

dz 4V? 
«^"-^-«JH 

1/2 

.1/2 3/2 

In a similar vein, from equations (20) and (23), [/may be expressed in terms of z as 

U = 
>PT 
2jy 

lVr-i| 
Nl/4 

Vz-sgn(Z) 

1/4 

The product, U-dV/dz, may therefore be computed as 

x 
%Y 

ly-ll1   -sgn(Z) Wr+i)3 

+sgn(r-i) 
|v?- 
(#+i) 

l/4\ 

i \r-t - + sgp(y-ly—j 
1/4 

J   y 

which is of the form 

U ■ dVldz = A(a0 + axlz + a2/z
2). 

Substituting this result and the transformed expression for L, given by equation (24), into 
equation (33) allows the integral for penetration to take the form 

'0 

P = Bp J(fl0 + ajz + a2/z
2)zb exp[c(z±l/z)]dz, 

(34) 

(35) 

(36) 

,(37) 

(38) 

(39) 

where the conditional minus sign in the exponential is taken when y< 1, and ah b, c, and BP are 
all constants, expressible as 

■1/4 
"o=\r-A (40) 



a}=-sga(R-Y) 

-11/4 

+ sgn(y-l) 

I r-   I3 

(Vr+i) 

1/4 > 

«2=sgn(r-l)|r-l|     . 

and 

Bp =L0 
R 

-1 |r-i 
ll/4 

4y-z0 

exp[-c(z0 + sgnfr - l)/z0)] 

(41) 

(42) 

(43) 

(44) 

(45) 

The form of equation (39) is basically identical to an intermediate step of the original 
solution [3], though with differently defined constants. The prior work [3] opted to transform the 
equation again to eliminate the leading polynomials, but did so at the expense of introducing 
noninteger powers into the exponential term. Then, the penetration equation was solved by 
expanding the exponential into a power series of (A! -z* + A2-z"*)' terms and expanding each 
(Arz* + A2'2"*y term intoy + 1 monomials, using a binomial expansion. The net result of the 
total expansion was that, to include terms out to a power of/' =n, a total of (n + IX« + 2)/2 
monomials was generated, and then integrated term by term. With n routinely exceeding 20 to 
obtain the desired precision, and approaching 100 for certain initial conditions, the computational 
burden was substantial, though still more efficient than a numerical integration of 

equations (l)-(4)- 

While the currently proposed method still relies on a series expansion of the exponential to 
perform the integration, a technique permits a streamlined method for achieving the expansion. 
In particular, a method exists to expand the subject exponential series with the form 

exp[c(2±l/z)]=f;c;z', (46) 

where the C/ or Cf coefficients are a function only of the parameter c. In particular, the Cj 
constants are given by evaluations of Bessel functions of the first kind, such that Cf = J/(2c). 
The C/ constants, by contrast, are given by modified Bessel functions of the first kind, such that 
C/ = Ij (2c). The expansion using the form of equation (46), to include terms of power z*", 
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requires the evaluation of only In + 1 monomials in z, and therefore represents a significant 
improvement over the method previously employed [3], which required the evaluation of 
(« + 1)(« + 2)/2 monomials in z for identical precision. 

While there is an overhead associated with the evaluation of the Cf parameters, given by the 
converging series that defines the Bessel functions for integer order, 

(47) 

(±l)'Cf,        J<0 
cl- 

the parameter c is fixed by the initial conditions (material properties) of the penetration problem. 
As such, the Cf or Cf terms may be calculated once at the onset of the analysis, regardless of 
how many z values (i.e., velocities) for which the solution needs evaluation. Furthermore, there 
exists a recursive technique for evaluating the Cf parameters of equation (47), based on the 
recursions 

r* i 
(48a) 

c;. i 

cu j+
CU 

c  c; 

and 

cl _ 1 

Ch 
c    C: 

(48b) 

which thereby offers further computational savings. 

The integration for penetration is, thus, finally achieved by employing this optimized expansion 
and integrating term by term and evaluating at the desired limits. When b is not an integer, 
which is the typical case, the result may be expressed as 

General case: P = BP J (ctoC*^ +ajCj +a2C%x)-. 
zi+b 

j + b 
(49) 

where the C" terms are used when y > 1 and the C~ terms are used when y< 1. For the case when 
b is an integer, the single term of equation (49) that would otherwise produce a zero in the 
denominator (i.e., the term for whichy = -b) originated from a \lz integration and would actually 
have produced, upon integration, the logarithmic term ln(z), instead of z^/(j+b). 
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6.   Implicit Time 

Though these solutions for L(V) and P(V) bypass the intermediate evaluation of V(t), the 
penetration variables may, if needed, be implicitly expressed in terms of time, by integration of 

1   1/ V   J T ' '0  KA> 
(50) 

in order to obtain t(V). As in the case of penetration, a closed-form solution to equation (50) will 
be possible only for the special case of y= 1 and then only when (JR - Y)IY is an odd integer 
(i.e., R/Y is even). In all other cases, the integration of equation (50) will take the form of a 
series solution. Of the several ways to obtain a series integration of the special case solutions, a 
power-series expansion is preferable to a repeated integration-by-parts solution because it avoids 
an alternating series, for the case when the "c" constant associated with the exp[-c(Vo2 - V2)] 
term is positive. Such is always the case for penetration problems. Both the R = Fand y= 1 
special cases can be reduced to an integral of the form 

]vbexp(cV2W = aM f] 
2V (ca2) 

to »1(2/+ A+ 1) 
(51) 

Thus, the special-case solutions for t(V) may be evaluated as 

R = Y: 

, = M£L 
2T(1+Vr)_ 

1 

«fl(2» + l) {2Y(1 + ^)) 

1 

K0Sü(2i+l) 

r=i: 

t _ PRLQVQ exp -PRVQ 

AY 
1 

toi\(2i+R/Y) 
■«rfv '-*" 

47 
1 

f Pzlrv1) 
JYQ + fil 

rPRv^ 

,(52) 

Ui\(2i + m) 47 
.(53) 

For the general case, a solution is most profitably obtained in a manner analogous to the 
penetration evaluation, in which a transformation to z facilitates a streamlined series solution: 

v <n/        i *i r JV 
-dz. (54) 

£ V   ~   K \U dz o  i-^o 
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This integration may be staged through the substitution of equations (24) and (35), to give the 
following form: 

t = Bt \(d0/z
V2 + rf,/z3/2)z* exp[c(z ± l/z)]dz, (55) 

z 

where the conditional minus sign is taken when y< 1. Here, b and c are defined as before, by 
equations (43) and (44), while 

d0=(fi+iy\ (56) 

4 = -sgn[(r - IX* - T)tlr - if2, (57) 

and 

„ 0/2  I ill'4 

*-l 
Y 

y-l\ 
 J— exp[-c(z0 + sgnfr - l)/z0)]. (58) 

*0 

By using a method analogous to that in equations (46)-(49) and with the same definitions for Cf 
[given by equation (47), where the "+" solution applies for y> 1, and the "-" solution for y< 1], 
the expression for t given by equation (55) may be expanded in a series as 

General case: t = Bt JH (d0C^ +dlCj)- 
zJ+b-\/2 

j + b-l/2 
(59) 

Like equation (49), there is one exception to the general validity of this result, specifically for the 
case when b is precisely a half-integer. If and only if this is the case, a single term of 
equation (59) will require modification: namely, the term for which j + b- 1/2 exactly equals 
zero, originating from a \lz integration. This integration would, for this one term only, rightfully 
have produced a ln(z) term, instead ofz^*'ml{j+b-\l2). As with the evaluation of penetration, 
the summation of equation (59) is carried out ioxj over some finite range from -n to +n so as to 
achieve the desired level of precision. 

7.   Terminal Rod Length, etc. 

The "terminal" rod length may be ascertained for the various solution cases [from equations (7), 
(9) or (11)1 by setting Fto its terminal value, Vx=^ for the case of R > Fand Vx = J-l/y 

for R < Y, with the parameter I given by Z = 2(R - Y)lpR. When R > Y, this termination 
corresponds to the point where U= 0, when the penetration ceases (though the rod may continue 
to erode thereafter). For R < Y, the termination corresponds to the point where L = 0, when the 
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rod erosion ceases (though the rod may continue to penetrate as a rigid body thereafter). This 
terminal state, denoted with the subscript "x," corresponds not to the end of the ballistic event, 
but rather to the time at which the governing equations (l)-(4) cease to apply. In those 
governing equations, developed for the case of a simultaneously eroding rod and target, the 
subscript V condition corresponds to the moment at which either the rod or the target stops 
eroding. In general, these two conditions do not occur simultaneously. The rod length 
(normalized) at the terminal state "x" for the various cases is expressible as: 

R=Y. ^ = exp 
.2T0 + #) 

■KH 
exp 

Y 

r 0 

121 
-1 

(60) 

(61) 

General case: 

^0/#[)+^(>V#|)2 +sgn(Z)0-r)T^F" J 

i+Vr 

exp - 

(62) 

Y 
WM^rWßi? +sgn(S)Q-r) -r(^o/#j)2    l+sgn^ 

i-r 2 

For cases where R > Y, this terminal length corresponds to that length of rod as of the moment 
that penetration ceases. For R < Y, this is the rod length at the onset of rigid-body penetration. 

Terminal values (at state "x") for penetration and time may likewise be obtained by evaluating 
the respective relations [equations (30), (32), or (49) for penetration and equations (52), (53), or 
(59) for time] with the substitution of V- Vx [and L = Lx in the case of equation (30)]. Their 
presentation is omitted, however, because these relations are summations and not in closed form 
like those for residual length previously given. As such, there is little clarity of reduction gained 
in restating these earlier equations with the V= Vx substitution in place. 

8.   Residual Erosion/Penetration Behaviors 

Equations (1) and (2) are valid only while there is simultaneous target penetration and rod 
erosion. Except for the special case ofR = Y, L and U will not simultaneously approach zero. 
In the general case then, the physical event will continue with either residual rod erosion 
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following the cessation of penetration (when R > 7) or residual rigid body penetration following 
the cessation of rod erosion (when R < 7). These afterflow events are amenable to closed-form 
analytical solution. Continuing to denote the state at this transition point (the moment of 
transition to either rigid target or rigid rod) with the use of the subscript "x" the absolute final 
state, when the rod velocity itself finally reaches zero, will be denoted with the subscript "f." 
Recall that Vx = Vs whenR > 7, while Vx = ^-"Lly whenR < Y, where 2 = 2(R - Y)lpR. 

8.1   Residual Rod Erosion 

For the case of R > Y, the target becomes rigid while rod erosion continues. To deal with this, 
equation (2) is discarded and is substituted with the constraint U = 0. The kinematic constraint 
of equation (3) becomes, as a result, V = -L. Equation (1) remains valid for the eroding-rod 
case. Solving equation (1) for L, differentiating, and substituting the revised kinematic 
constraint to eliminate L, one obtains as the governing equation 

T>2 W*=-(Y/pR)V. 

This may be integrated to obtain V in terms of V, whereupon equation (1) may be used to 
eliminate V in favor of I. The result (as a function of V) is that 

L = Lx exp 
2Y     x 

(63) 

(64) 

Evaluating the penetration and rod length at the final state (where V= 0), one obtains Pf-Px 

and 

I^exp -PM vl 
27 

(65) 

Because of the similarity between the governing equation here, equation (63), and the special 
case R = Y governing equation, equation (6), the duration of this residual-erosion phase of the rod 
may likewise be calculated with the same series-solution form used to calculate event duration 
for the special cases, described by equation (51). Use of this form leads to 

2>\ 

Y        \   2Y   j 
1 

Trzz 5 i!(2i + l) 
(p*vj 

27 

V 1 
Vxhil(2i + l) 

f _   T^-2 V eZl 
27 

,    (66) 

which, as V approaches zero, becomes the following result: 

PR
L

,K (-p*K 
2^* 

V 27 
1 

£Z i!(2/ + l) 
{Pll 

27 

2\ 

(67) 
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8.2   Residual Rigid-Body Penetration 

For the alternate case of R <Y,& state of rigid-body penetration is reached after the rod erosion 
ceases. As before, equation (2) is discarded and is substituted with the constraint L = 0. The 
kinematic constraint (3) becomes, as a result, V = U. However, there is one additional 
modification required to the governing equations. In particular, the force causing the rod 
deceleration in equation (1) is no longer Y, since the rod is no longer in a plastic state. Rather, it 
is a diminished stress state applied by the pressure head and resistance of the target, 
112 pTU

2 +R. But since, kinematically, V = UandL remains fixed atLx, the rod deceleration 

equation becomes 

LxV = -(l/2pTV
2+R)/pR (68) 

There is no algebraic relation between P and V analogous to that which equation (1) affords 
between L and V. Therefore, this equation will be solved by separating the variables Pand t, as 
follows: 

2L dV 
Y    2R/pT+V2 -dt. (69) 

This may be solved as 

V = U = J—tan JL 
L. hpT 

(/,-0 + tan-1 V  I (70) 

The final time, at which the velocity drops to zero, is found to be 

',".+j, Rm" 

r -\ 

(71) 

The expression for U, which is equation (70), may be integrated one more time to obtain the 
differential penetration that occurs during the afterflow phase. One obtains 

p-p..»*. ^ATM«'^ -log cos tan ' 
f 

\PT_ 

2R J) 
(72) 

When evaluated at t = tf, and employing some trigonometric substitutions, the final result is that 

Lf=Lx and the afterflow penetration is 

Pf-Px=^log 
r 

i+ PrK 
2R 

2> 

(73) 
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9.   Conclusions 

This report presents updated results related to the exact solution of the long-rod penetration 
equations, formulated by Alekseevskii [1] and Täte [2], and first solved by Walters and 
Segletes [3]. While the original solution [3] is accurate and comprehensive, there have been a 
number of improvements or enhancements, both to the presentation and the solution approach. 

Equation (5) is a concise analytical presentation of rod length as a function of rod velocity, valid 
for both special and general cases, providing an enhanced sense for the terms that drive the 
analytical solution. Equations (6H11) compare and contrast the special- and general-case 
analytical solutions, while equations (12) and (13) present the result in terms of an alternate 
model variable. The key independent variable transformation (to z), unexplained but 
indispensable to the original solution, is herein developed more fully and much of its mystery is 
thereby uncloaked. Further, its expression is slightly altered from the original solution, resulting, 
by comparison, in a form amenable to a highly streamlined series solution for penetration P(z), 
as equation (49), or implicit time, t(z), as equation (59). 

Not only are results derived to the point where the penetration equations cease validity, but 
extensions to the original solution are presented, which account for the period of rigid-body 
penetration or rigid-target rod erosion that follows the period of eroding-body penetration 
addressed by the original penetration equations. 

While not taking anything from the original solution of Walters and Segletes [3], the current 
work offers enhanced appreciation and understanding of the original effort, as well as extensions 
to the original work. Finally, the streamlined techniques presented herein make any 
implementation of the solution significantly more efficient than the originally offered solution 
technique. 
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