#include "object.hpp" #include "p3d\parser.hpp" #include "glm\gtc\matrix_transform.hpp" ace::simulation::vertex::vertex(vertex_table & _table, ace::vector3 _vertex, uint32_t _id) : table(_table), vertex_id(_id) { this->original_vertex = _vertex; this->animated_vertex = _vertex; } ace::simulation::vertex::~vertex() { } ace::simulation::face::face( const ace::p3d::face_p p3d_face, const ace::p3d::lod_p p3d_lod, const ace::p3d::model_p p3d, ace::simulation::lod *object_lod) { this->type = p3d_face->type; for (uint16_t vertex_id : p3d_face->vertex_table) { this->vertices.push_back(object_lod->vertices[vertex_id]); object_lod->vertices[vertex_id]->faces.push_back(this); } } ace::simulation::face::~face() { } void ace::simulation::vertex::animate(const glm::mat4 &matrix, ace::vector3 rotation_offset, bool offset) { ace::vector3 temp_vector = this->original_vertex; if (offset) { temp_vector = temp_vector - rotation_offset; } glm::vec4 temp_gl_vector = glm::vec4(temp_vector.x(), temp_vector.y(), temp_vector.z(), 1.0f); temp_gl_vector = matrix*temp_gl_vector; this->animated_vertex = ace::vector3(temp_gl_vector.x, temp_gl_vector.y, temp_gl_vector.z); if (offset) { this->animated_vertex = this->animated_vertex + rotation_offset; } } ace::simulation::named_selection::named_selection( const ace::p3d::named_selection_p p3d_selection, const ace::p3d::lod_p p3d_lod, const ace::p3d::model_p p3d, ace::simulation::lod *object_lod) { this->name = p3d_selection->name; for (uint16_t vertex_id : p3d_selection->vertex_table.data) { this->vertices.push_back(object_lod->vertices[vertex_id]); object_lod->vertices[vertex_id]->selections.push_back(this); } for (uint16_t face_id : p3d_selection->faces.data) { this->faces.push_back(object_lod->faces[face_id]); } } ace::simulation::named_selection::~named_selection() { } void ace::simulation::named_selection::animate(const glm::mat4 &matrix, ace::vector3 rotation_offset) { bool offset = rotation_offset.zero_distance(); for (auto selection_vertex : this->vertices) { selection_vertex->animate(matrix, rotation_offset, offset); } } ace::simulation::vertex_table::vertex_table(const ace::p3d::vertex_table_p p3d_vertex_table, const ace::p3d::lod_p p3d_lod, const ace::p3d::model_p p3d) : animated(false) { this->vertices.resize(p3d_vertex_table->points.size); for (uint32_t i = 0; i <= p3d_vertex_table->points.size - 1; ++i) { if(p3d->info->autocenter) { ace::vector3 new_vertex = ace::vector3( p3d_vertex_table->points[i].x() + (p3d_lod->autocenter_pos.x()*-1), p3d_vertex_table->points[i].y() + (p3d_lod->autocenter_pos.y()*-1), p3d_vertex_table->points[i].z() + (p3d_lod->autocenter_pos.z()*-1) ); this->vertices[i] = std::make_shared(*this, new_vertex, i); } else { this->vertices[i] = std::make_shared(*this, p3d_vertex_table->points[i], i); } } } ace::simulation::vertex_table::~vertex_table() { } ace::simulation::lod::lod(const ace::p3d::lod_p p3d_lod, const ace::p3d::model_p p3d) { this->id = p3d_lod->id; this->vertices = vertex_table(p3d_lod->vertices, p3d_lod, p3d); this->autocenter_pos = p3d_lod->autocenter_pos; for (ace::p3d::face_p p3d_face : p3d_lod->faces) { this->faces.push_back(std::make_shared(p3d_face, p3d_lod, p3d, this)); } for (ace::p3d::named_selection_p p3d_selection : p3d_lod->selections) { this->selections[p3d_selection->name] = std::make_shared(p3d_selection, p3d_lod, p3d, this); } } ace::simulation::lod::~lod() { } ace::simulation::lod_animation_info::lod_animation_info( animation *_animation, lod_p _lod, const ace::p3d::animate_bone_p p3d_animate_bone, const ace::p3d::animation_p p3d_animation, const ace::p3d::model_p p3d) : animation_definition(_animation), lod(_lod) { this->index = p3d_animate_bone->index; if (p3d->info->autocenter) { this->axis_position = p3d_animate_bone->axis_position + (lod->autocenter_pos*-1); this->axis_direction = p3d_animate_bone->axis_direction.normalize(); } else { this->axis_position = p3d_animate_bone->axis_position; this->axis_direction = p3d_animate_bone->axis_direction.normalize(); } } ace::simulation::lod_animation_info::~lod_animation_info() { } ace::simulation::animation::animation(object *parent_object, const ace::p3d::animation_p p3d_animation, const ace::p3d::model_p p3d) { this->type = p3d_animation->type; this->name = p3d_animation->name; this->source = p3d_animation->source; this->source_address = p3d_animation->source_address; this->min_value = p3d_animation->min_value; this->max_value = p3d_animation->max_value; this->min_phase = p3d_animation->min_phase; this->max_phase = p3d_animation->max_phase; switch (type) { // rotations case 0: case 1: case 2: case 3: angle0 = p3d_animation->angle0; angle1 = p3d_animation->angle1; break; // translations case 4: case 5: case 6: case 7: offset0 = p3d_animation->offset0; offset1 = p3d_animation->offset1; break; case 8: direct_axis_pos = p3d_animation->direct_axis_pos; direct_axis_dir = p3d_animation->direct_axis_dir; direct_angle = p3d_animation->direct_angle; direct_axis_offset = p3d_animation->direct_axis_offset; break; case 9: hide_value = p3d_animation->hide_value; default: offset0 = 0.0f; offset1 = 0.0f; } for (ace::p3d::animate_bone_p animation_bone : p3d_animation->bones) { this->lod_info[animation_bone->lod] = std::make_shared(this, parent_object->lods[animation_bone->lod], animation_bone, p3d_animation, p3d); } } ace::simulation::animation::~animation() { } typedef union { float f; struct { uint32_t sh1 : 32; } parts; } double_cast; #define RAD2DEG(rad) (rad * 180.0f / 3.1415926f); typedef std::map>> animation_transform; animation_transform ace::simulation::animation::animate(const float phase, const std::vector &lods, animation_transform base_transforms) { animation_transform return_matrices; for (auto lod_id : lods) { glm::mat4 base_matrix = base_transforms[lod_id].first; ace::vector3 base_rotation_offset = base_transforms[lod_id].second; glm::mat4 animation_matrix; ace::vector3 rotation_offset = ace::vector3(0, 0, 0); float scale = get_scale(phase); switch (this->type) { //rotation case 0: { scale = (scale / (max_value - min_value)) * (angle1 - angle0); glm::vec3 rotation_axis = glm::vec3(this->lod_info[lod_id]->axis_direction.x(), this->lod_info[lod_id]->axis_direction.y(), this->lod_info[lod_id]->axis_direction.z()); animation_matrix = glm::rotate(animation_matrix, -scale, rotation_axis); rotation_offset = this->lod_info[lod_id]->axis_position; break; } //rotationX case 1: { scale = (scale / (max_value - min_value)) * (angle1 - angle0); glm::vec3 rotation_axis = glm::vec3(1.0f, 0.0f, 0.0f); animation_matrix = glm::rotate(animation_matrix, -scale, rotation_axis); rotation_offset = this->lod_info[lod_id]->axis_position; break; } //rotationY case 2: { scale = (scale / (max_value - min_value)) * (angle1 - angle0); glm::vec3 rotation_axis = glm::vec3(0.0f, 1.0f, 0.0f); animation_matrix = glm::rotate(animation_matrix, -scale, rotation_axis); rotation_offset = this->lod_info[lod_id]->axis_position; break; } //rotationZ case 3: { scale = (scale / (max_value - min_value)) * (angle1 - angle0); glm::vec3 rotation_axis = glm::vec3(0.0f, 0.0f, 1.0f); animation_matrix = glm::rotate(animation_matrix, -scale, rotation_axis); rotation_offset = this->lod_info[lod_id]->axis_position; break; } //translation case 4: { scale = (scale / (max_value - min_value)) * (offset1 - offset0); animation_matrix = glm::translate(animation_matrix, glm::vec3( this->lod_info[lod_id]->axis_direction.x()*scale, this->lod_info[lod_id]->axis_direction.y()*scale, this->lod_info[lod_id]->axis_direction.z()*scale )); break; } //translationX case 5: { animation_matrix = glm::translate(animation_matrix, glm::vec3( scale, 0.0f, 0.0f )); break; } //translationY case 6: { animation_matrix = glm::translate(animation_matrix, glm::vec3( 0.0f, scale, 0.0f )); break; } //translationZ case 7: { animation_matrix = glm::translate(animation_matrix, glm::vec3( 0.0f, 0.0f, scale )); break; } case 8: { // fuck direct for now } //hide case 9: { if(phase >= hide_value) animation_matrix = glm::mat4x4(0.0f); break; } default: {} } return_matrices[lod_id].first = animation_matrix * base_matrix; return_matrices[lod_id].second = base_rotation_offset + rotation_offset; } return return_matrices; } float ace::simulation::animation::get_scale(float phase) { float scale = 0; switch (source_address) { case 1: scale = fmod(phase - min_value, max_value - min_value) + min_value; scale = std::min(std::max(scale, min_phase), max_phase); break; case 2: scale = fmod(phase - min_value, (max_value - min_value) * 2) + min_value; if (scale > max_value) scale = max_value - (scale - max_value); scale = std::min(std::max(scale, min_phase), max_phase); break; default: scale = std::min(std::max(phase, min_phase), max_phase); } return scale; } ace::simulation::bone::bone( const std::string _name, const std::vector &children, const std::map &p3d_bones, bone *_parent, const ace::p3d::model_p p3d, object * sim_object ) : parent(_parent), name(_name), base_object(sim_object) { for (auto const child_bone : children) { if (sim_object->all_bones.find(child_bone) == sim_object->all_bones.end()) { ace::p3d::bone_p p3d_bone = p3d_bones.find(child_bone)->second; sim_object->all_bones[child_bone] = std::make_shared(p3d_bone->name, p3d_bone->children, p3d_bones, this, p3d, sim_object); } this->children.push_back(sim_object->all_bones[child_bone]); } if (parent) { for (auto p3d_animation : p3d_bones.find(name)->second->animations) { this->animations.push_back(sim_object->animations[p3d_animation]); } } } void ace::simulation::bone::animate(const std::map &animation_state, const std::vector &lods, animation_transform base_transforms) { if (animations.size() > 0) { for (auto bone_animation : animations) { if(animation_state.find(bone_animation->name) != animation_state.end()) { base_transforms = bone_animation->animate(animation_state.find(bone_animation->name)->second, lods, base_transforms); } } } for (auto child_bone : children) { child_bone->animate(animation_state, lods, base_transforms); } if(animations.size() > 0) { for (auto bone_animation : animations) { for (auto lod_id : lods) { auto selection = this->base_object->lods[lod_id]->selections.find(this->name); if(selection != this->base_object->lods[lod_id]->selections.end()) { selection->second->animate(base_transforms[lod_id].first, base_transforms[lod_id].second); } } } } } ace::simulation::object::object() { } ace::simulation::object::object(const ace::p3d::model_p model) { for (ace::p3d::lod_p p3d_lod : model->lods) { lod_p new_lod = std::make_shared(p3d_lod, model); this->lods.push_back(new_lod); this->lods[p3d_lod->id]->type = model->info->resolutions[p3d_lod->id]; } for (ace::p3d::animation_p p3d_animation : model->animations) { this->animations.push_back(std::make_shared(this, p3d_animation, model)); } std::map p3d_bones; for (auto const skeleton_bone : model->skeleton->all_bones) { p3d_bones[skeleton_bone->name] = skeleton_bone; } std::vector root_bones; for (auto const root_bone : model->skeleton->root_bones) { root_bones.push_back(root_bone.first); } this->root_bone = std::make_shared("", root_bones, p3d_bones, nullptr, model, this); } ace::simulation::object::~object() { } void ace::simulation::object::animate(const std::map &animation_state, const std::vector &selected_lods) { animation_transform identity_transform; for (uint32_t lod_id : selected_lods) { identity_transform[lod_id].first = glm::mat4(); identity_transform[lod_id].second = ace::vector3(0, 0, 0); } this->root_bone->animate(animation_state, selected_lods, identity_transform); }