ACE3/extensions/artillerytables/artillerytables.cpp
2019-03-10 10:18:14 -05:00

357 lines
16 KiB
C++

/*
* ace_artillerytables.cpp
* Author: PabstMirror
*/
//#define TEST_EXE
#define _USE_MATH_DEFINES
#include <cmath>
#include <vector>
#include <string>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <tuple>
#include <algorithm>
#include <chrono>
#include <future>
// ace libs:
#include "vector.hpp"
#ifndef TEST_EXE
extern "C" {
__declspec(dllexport) void __stdcall RVExtension(char* output, int outputSize, const char* function);
__declspec(dllexport) int __stdcall RVExtensionArgs(char* output, int outputSize, const char* function, const char** argv, int argc);
__declspec(dllexport) void __stdcall RVExtensionVersion(char* output, int outputSize);
}
#endif
// Constants
static const double timeStep = 1.0 / 100;
static const double rangeSearchErrorMax = 0.001; // ratio * distance
static const double rangeSearchAngleConvergance = 0.00001;
static const double gravityABS = 9.8066;
static const ace::vector3<double> gravityAccl(0, 0, -1 * gravityABS);
// Globals:
std::vector<std::future<std::string>> fWorkers;
unsigned int getLineIndex = 0;
std::tuple<double, double, double> simulateShot(const double& _fireAngleRad, const double& _muzzleVelocity, const double& _heightOfTarget, const double& _crossWind, const double& _tailWind, const double& _temperature, const double& _airDensity, double _airFriction) {
const double kCoefficient = -1.0 * _airDensity * _airFriction;
const double powderEffects = (_airFriction) ? ((_temperature + 273.13) / 288.13 - 1) / 40 + 1 : 1.0;
double currentTime = 0;
ace::vector3<double> currentPosition(0, 0, 0);
ace::vector3<double> lastPosition(currentPosition);
ace::vector3<double> currentVelocity(0, powderEffects * _muzzleVelocity * cos(_fireAngleRad), powderEffects * _muzzleVelocity * sin(_fireAngleRad));
const ace::vector3<double> wind(_crossWind, _tailWind, 0);
while ((currentVelocity.z() > 0) || (currentPosition.z() >= _heightOfTarget)) {
lastPosition = currentPosition;
ace::vector3<double> apparentWind = wind - currentVelocity;
ace::vector3<double> changeInVelocity = gravityAccl + apparentWind * (kCoefficient * apparentWind.magnitude());
currentVelocity += changeInVelocity * timeStep;
currentPosition += currentVelocity * timeStep;
currentTime += timeStep;
}
const double lastCurrentRatio((_heightOfTarget - currentPosition.z()) / (lastPosition.z() - currentPosition.z()));
ace::vector3<double> finalPos = lastPosition.lerp(currentPosition, lastCurrentRatio);
return { finalPos.x(), finalPos.y(), currentTime };
}
std::tuple<double, double> findMaxAngle(const double& _muzzleVelocity, const double& _airFriction) {
if (_airFriction == 0) {
return { M_PI_4, _muzzleVelocity * _muzzleVelocity / gravityABS };
}
double bestAngle = M_PI_4;
double bestDistance = -1;
double testResultDist;
for (double testAngle = M_PI_4; testAngle > 0; testAngle -= (M_PI_4 / 100.0)) {
std::tie(std::ignore, testResultDist, std::ignore) = simulateShot(testAngle, _muzzleVelocity, 0, 0, 0, 15, 1, _airFriction);
if (testResultDist > bestDistance) {
bestAngle = testAngle;
bestDistance = testResultDist;
}
}
return { bestAngle, bestDistance };
}
std::tuple<double, double, double> simulateFindSolution(const double& _rangeToHit, const double& _heightToHit, const double& _muzzleVelocity, const double& _airFriction, const double& _minElev, const double& _maxElev, const bool& _highArc) {
// returns: actual distance traveled, elevation, time of flight
double searchMin = _minElev;
double searchMax = _maxElev;
if (!_airFriction) {
// can do trivial ballistics physics to get angle, could compute tof as well, but run through sim once to ensure consistancy (uses positive value of g)
double radicand = pow(_muzzleVelocity, 4) - gravityABS * (gravityABS * pow(_rangeToHit, 2) + 2 * _heightToHit * pow(_muzzleVelocity, 2));
if ((!_rangeToHit) || (radicand < 0)) { // radican't
return { -1, -1, -1 };
}
radicand = sqrt(radicand);
double angleRoot = atan((pow(_muzzleVelocity, 2) + radicand) / (gravityABS * _rangeToHit));
if ((angleRoot > _maxElev) || (angleRoot < _minElev)) {
angleRoot = atan((pow(_muzzleVelocity, 2) - radicand) / (gravityABS * _rangeToHit));
}
if ((angleRoot > _maxElev) || (angleRoot < _minElev)) {
return { -1, -1, -1 };
};
const double tof = _rangeToHit / (_muzzleVelocity * cos(angleRoot));
return { _rangeToHit, angleRoot, tof };
}
int numberOfAttempts = 0;
double resultDistance = -1;
double resultTime = -1;
double currentError = 9999;
double currentElevation = -1;
do {
if (numberOfAttempts++ > 50) break; // for safetey, min/max should converge long before
currentElevation = (searchMin + searchMax) / 2.0;
std::tie(std::ignore, resultDistance, resultTime) = simulateShot(currentElevation, _muzzleVelocity, _heightToHit, 0, 0, 15, 1, _airFriction);
currentError = _rangeToHit - resultDistance;
// printf("elev %f [%f, %f]range%f\n goes %f [%f]\n", currentElevation, searchMin, searchMax, (searchMax - searchMin), resultDistance, currentError);
if ((currentError > 0) ^ (!_highArc)) {
searchMax = currentElevation;
} else {
searchMin = currentElevation;
}
} while ((searchMax - searchMin) > rangeSearchAngleConvergance);
// printf("[%f, %f] Actuall [%f] err [%f of %f]\n", _rangeToHit, _heightToHit, resultDistance, currentError, (_rangeToHit * rangeSearchErrorMax * (_highArc ? 1.0 : 2.0)));
// On some low angle shots, it will really struggle to converge because of precision issues
if ((abs(currentError) > (_rangeToHit * rangeSearchErrorMax * (_highArc ? 1.0 : 2.0)))) {
return { -1, -1, -1 };
}
return { resultDistance, currentElevation, resultTime };
}
void writeNumber(std::stringstream & ss, double _num, const int& _widthInt, const int& _widthDec) {
if ((_num < 0) && (_num > -0.05)) { // hard coded fix -0.0 rounding errors
_num = 0;
}
if (_widthInt > 1) {
ss << std::setfill('0');
}
ss << std::fixed << std::setw(_widthInt) << std::setprecision(_widthDec) << _num;
}
std::string simulateCalcRangeTableLine(const double& _rangeToHit, const double& _muzzleVelocity, const double& _airFriction, const double& _minElev, const double& _maxElev, const bool& _highArc) {
auto [actualDistance, lineElevation, lineTimeOfFlight] = simulateFindSolution(_rangeToHit, 0, _muzzleVelocity, _airFriction, _minElev, _maxElev, _highArc);
if (lineTimeOfFlight < 0) {
return "";
}
auto [actualDistanceHeight, lineHeightElevation, lineHeightTimeOfFlight] = simulateFindSolution(_rangeToHit, -100, _muzzleVelocity, _airFriction, _minElev, _maxElev, _highArc);
std::stringstream returnSS;
returnSS << "[\"";
writeNumber(returnSS, _rangeToHit, 0, 0);
returnSS << "\",\"";
writeNumber(returnSS, lineElevation * 3200.0 / M_PI, 0, 0);
returnSS << "\",\"";
if (lineHeightElevation > 0) {
const double drElevAdjust = lineHeightElevation - lineElevation;
const double drTofAdjust = lineHeightTimeOfFlight - lineTimeOfFlight;
writeNumber(returnSS, drElevAdjust * 3200.0 / M_PI, 0, 0);
returnSS << "\",\"";
writeNumber(returnSS, drTofAdjust, 0, 1);
} else {
// low angle shots won't be able to adjust down further
returnSS << "-\",\"-";
}
returnSS << "\",\"";
writeNumber(returnSS, lineTimeOfFlight, 0, ((lineTimeOfFlight < 99.945) ? 1 : 0)); // round TOF when high
returnSS << "\",\"";
if (_airFriction) {
// Calc corrections:
double xOffset, yOffset;
// Crosswind
std::tie(xOffset, std::ignore, std::ignore) = simulateShot(lineElevation, _muzzleVelocity, 0, 10, 0, 15, 1, _airFriction);
const double crosswindOffsetRad = atan2(xOffset, actualDistance) / 10;
// Headwind
std::tie(std::ignore, yOffset, std::ignore) = simulateShot(lineElevation, _muzzleVelocity, 0, 0, -10, 15, 1, _airFriction);
const double headwindOffset = (actualDistance - yOffset) / 10;
// Tailwind
std::tie(std::ignore, yOffset, std::ignore) = simulateShot(lineElevation, _muzzleVelocity, 0, 0, 10, 15, 1, _airFriction);
const double tailwindOffset = (actualDistance - yOffset) / 10;
// Air Temp Dec
std::tie(std::ignore, yOffset, std::ignore) = simulateShot(lineElevation, _muzzleVelocity, 0, 0, 0, 5, 1, _airFriction);
const double tempDecOffset = (actualDistance - yOffset) / 10;
// Air Temp Inc
std::tie(std::ignore, yOffset, std::ignore) = simulateShot(lineElevation, _muzzleVelocity, 0, 0, 0, 25, 1, _airFriction);
const double tempIncOffset = (actualDistance - yOffset) / 10;
// Air Density Dec
std::tie(std::ignore, yOffset, std::ignore) = simulateShot(lineElevation, _muzzleVelocity, 0, 0, 0, 15, 0.9, _airFriction);
const double airDensityDecOffset = (actualDistance - yOffset) / 10;
// Air Density Inc
std::tie(std::ignore, yOffset, std::ignore) = simulateShot(lineElevation, _muzzleVelocity, 0, 0, 0, 15, 1.1, _airFriction);
const double airDensityIncOffset = (actualDistance - yOffset) / 10;
writeNumber(returnSS, crosswindOffsetRad * 3200.0 / M_PI, 1, 1);
returnSS << "\",\"";
writeNumber(returnSS, headwindOffset, 1, (abs(headwindOffset) > 9.949) ? 0 : 1);
returnSS << "\",\"";
writeNumber(returnSS, tailwindOffset, 1, (abs(tailwindOffset) > 9.949) ? 0 : 1);
returnSS << "\",\"";
writeNumber(returnSS, tempDecOffset, 1, (abs(tempDecOffset) > 9.949) ? 0 : 1);
returnSS << "\",\"";
writeNumber(returnSS, tempIncOffset, 1, (abs(tempIncOffset) > 9.949) ? 0 : 1);
returnSS << "\",\"";
writeNumber(returnSS, airDensityDecOffset, 1, (abs(airDensityDecOffset) > 9.949) ? 0 : 1);
returnSS << "\",\"";
writeNumber(returnSS, airDensityIncOffset, 1, (abs(airDensityIncOffset) > 9.949) ? 0 : 1);
returnSS << "\"]";
} else {
returnSS << "-\",\"-\",\"-\",\"-\",\"-\",\"-\",\"-\"]"; // 7 dashes
}
return (returnSS.str());
}
#ifndef ACE_FULL_VERSION_STR
#define ACE_FULL_VERSION_STR "not defined"
#endif
void RVExtensionVersion(char* output, int outputSize) {
strncpy_s(output, outputSize, ACE_FULL_VERSION_STR, _TRUNCATE);
}
void RVExtension(char* output, int outputSize, const char* function) {
if (!strcmp(function, "version")) {
RVExtensionVersion(output, outputSize);
return;
}
strncpy_s(output, outputSize, "error", _TRUNCATE);
}
int RVExtensionArgs(char* output, int outputSize, const char* function, const char** args, int argsCnt) {
if (!strcmp(function, "version")) {
RVExtensionVersion(output, outputSize);
return 0;
}
if (!strcmp(function, "start")) {
if (argsCnt != 5) { return -2; } // Error: not enough args
const double muzzleVelocity = strtod(args[0], NULL);
const double airFriction = strtod(args[1], NULL);
double minElev = (M_PI / 180.0) * strtod(args[2], NULL);
double maxElev = (M_PI / 180.0) * strtod(args[3], NULL);
const bool highArc = !strcmp(args[4], "true");
// Reset workers:
fWorkers.clear();
getLineIndex = 0;
auto [bestAngle, bestDistance] = findMaxAngle(muzzleVelocity, airFriction);
minElev = std::max(minElev, 2 * (M_PI / 180.0)); // cap min to 2 degrees (negative elev might get messy)
maxElev = std::min(maxElev, 88 * (M_PI / 180.0)); // cap max to 88 degrees (mk6)
if (highArc) {
minElev = std::max(minElev, bestAngle);
} else {
maxElev = std::min(maxElev, bestAngle);
}
const double loopStart = (bestDistance < 4000) ? 50 : 100;
const double loopInc = (bestDistance < 5000) ? 50 : 100; // simplify when range gets high
const double loopMaxRange = std::min(bestDistance, 25000.0); // with no air resistance, max range could go higher than 60km
if (maxElev > minElev) { // don't bother if we can't hit anything (e.g. mortar in low mode)
for (double range = loopStart; range < loopMaxRange; range += loopInc) {
fWorkers.emplace_back(std::async(&simulateCalcRangeTableLine, range, muzzleVelocity, airFriction, minElev, maxElev, highArc));
}
}
std::stringstream outputStr; // debug max distance and thead count
outputStr << "[" << bestDistance << "," << fWorkers.size() << "]";
strncpy_s(output, outputSize, outputStr.str().c_str(), _TRUNCATE);
return 0;
}
if (!strcmp(function, "getline")) {
// 1 = data on line, 2 - data not ready, 3 - done
std::string result = "";
std::future_status workerStatus;
while (result.empty()) {
if (getLineIndex >= fWorkers.size()) {
return 3;
}
workerStatus = fWorkers[getLineIndex].wait_for(std::chrono::seconds(0));
if (workerStatus != std::future_status::ready) {
return 2;
}
result = fWorkers[getLineIndex].get();
getLineIndex++;
}
strncpy_s(output, outputSize, result.c_str(), _TRUNCATE);
return 1;
}
return -1; // Error: function not valid
}
#ifdef TEST_EXE
int main() {
//double a, b;
//std::tie(a, b) = simulateFindSolution(200,50, 100, 0, 0, 45 * (M_PI / 180.0), false);
//printf("sim: %f, %f\n",a,b);
//std::string r = simulateCalcRangeTableLine(4000, 810, );
//printf("result: [%s]\n", r.c_str());
//auto [lineElevation, lineTimeOfFlight] = simulateFindSolution(4000, 0, 810, -0.00005, 5 * (M_PI / 180.0), 80 * (M_PI / 180.0), false);
//printf("result: [%f, %f]\n", lineElevation, lineTimeOfFlight);
// Determine realistic air firiction values
/*
double mv = 241;
printf(" %f m/s\n", mv);
double range;
for (double ar = 0; ar > -0.00015; ar -= 0.00001) {
std::tie(std::ignore, range) = findMaxAngle(mv, ar);
printf("[%f] = %f\n", ar, range);
}
*/
/*
// test callExtension
char output[256];
char function1[] = "start";
//const char* args1[] = { "200", "0", "-5", "80", "false" };
//const char* args1[] = { "153.9", "-0.00005", "-5", "80", "false" };
const char* args1[] = { "810", "-0.00005", "-5", "80", "false" };
//const char* args1[] = { "810", "0", "-5", "80", "true" };
auto t1 = std::chrono::high_resolution_clock::now();
int ret = RVExtensionArgs(output, 256, function1, args1, 5);
auto t2 = std::chrono::high_resolution_clock::now();
std::printf("ret: %d - %s\n", ret, output);
std::printf("func %s: %1.1f ms\n", function1, std::chrono::duration<double, std::milli>(t2 - t1).count());
int lines = 0;
auto t3 = std::chrono::high_resolution_clock::now();
char function2[] = "getline";
int ret2 = 0;
while (ret2 != 3) { // dumb spin
ret2 = RVExtensionArgs(output, 256, function2, NULL, 0);
if (ret2 == 1) {
lines++;
//std::printf("ret: %d - %s\n", ret2, output);
}
}
auto t4 = std::chrono::high_resolution_clock::now();
std::printf("func %s: %1.1f ms with %d lines\n", function2, std::chrono::duration<double, std::milli>(t4 - t3).count(), lines);
std::printf("callExtensions finished in %1.1f ms\n", std::chrono::duration<double, std::milli>(t4 - t1).count());
*/
}
#endif