split up facility logic into two files

This commit is contained in:
Mikayla Fischler 2024-08-18 19:10:43 -04:00
parent f34747372f
commit e076e327d8
2 changed files with 858 additions and 821 deletions

View File

@ -1,40 +1,18 @@
local audio = require("scada-common.audio")
local const = require("scada-common.constants")
local log = require("scada-common.log") local log = require("scada-common.log")
local rsio = require("scada-common.rsio")
local types = require("scada-common.types") local types = require("scada-common.types")
local util = require("scada-common.util") local util = require("scada-common.util")
local unit = require("supervisor.unit") local fac_update = require("supervisor.facility_update")
local qtypes = require("supervisor.session.rtu.qtypes") local unit = require("supervisor.unit")
local rsctl = require("supervisor.session.rsctl") local rsctl = require("supervisor.session.rsctl")
local TONE = audio.TONE
local ALARM = types.ALARM
local PRIO = types.ALARM_PRIORITY
local ALARM_STATE = types.ALARM_STATE
local CONTAINER_MODE = types.CONTAINER_MODE
local PROCESS = types.PROCESS local PROCESS = types.PROCESS
local PROCESS_NAMES = types.PROCESS_NAMES
local RTU_UNIT_TYPE = types.RTU_UNIT_TYPE local RTU_UNIT_TYPE = types.RTU_UNIT_TYPE
local WASTE_MODE = types.WASTE_MODE
local WASTE = types.WASTE_PRODUCT local WASTE = types.WASTE_PRODUCT
local IO = rsio.IO ---@enum AUTO_SCRAM
local DTV_RTU_S_DATA = qtypes.DTV_RTU_S_DATA
-- 7.14 kJ per blade for 1 mB of fissile fuel<br>
-- 2856 FE per blade per 1 mB, 285.6 FE per blade per 0.1 mB (minimum)
local POWER_PER_BLADE = util.joules_to_fe_rf(7140)
local FLOW_STABILITY_DELAY_S = const.FLOW_STABILITY_DELAY_MS / 1000
local ALARM_LIMS = const.ALARM_LIMITS
local AUTO_SCRAM = { local AUTO_SCRAM = {
NONE = 0, NONE = 0,
MATRIX_DC = 1, MATRIX_DC = 1,
@ -44,20 +22,13 @@ local AUTO_SCRAM = {
GEN_FAULT = 5 GEN_FAULT = 5
} }
---@enum START_STATUS
local START_STATUS = { local START_STATUS = {
OK = 0, OK = 0,
NO_UNITS = 1, NO_UNITS = 1,
BLADE_MISMATCH = 2 BLADE_MISMATCH = 2
} }
local charge_Kp = 0.15
local charge_Ki = 0.0
local charge_Kd = 0.6
local rate_Kp = 2.45
local rate_Ki = 0.4825
local rate_Kd = -1.0
---@class facility_management ---@class facility_management
local facility = {} local facility = {}
@ -67,8 +38,10 @@ local facility = {}
---@param cooling_conf sv_cooling_conf cooling configurations of reactor units ---@param cooling_conf sv_cooling_conf cooling configurations of reactor units
---@param check_rtu_id function ID checking function for RTUs attempting to be linked ---@param check_rtu_id function ID checking function for RTUs attempting to be linked
function facility.new(config, cooling_conf, check_rtu_id) function facility.new(config, cooling_conf, check_rtu_id)
---@class _facility_self
local self = { local self = {
units = {}, units = {},
types = { AUTO_SCRAM = AUTO_SCRAM, START_STATUS = START_STATUS },
status_text = { "START UP", "initializing..." }, status_text = { "START UP", "initializing..." },
all_sys_ok = false, all_sys_ok = false,
allow_testing = false, allow_testing = false,
@ -143,6 +116,9 @@ function facility.new(config, cooling_conf, check_rtu_id)
imtx_faulted_times = { 0, 0, 0 } imtx_faulted_times = { 0, 0, 0 }
} }
-- provide self to facility update functions
local f_update = fac_update(self)
-- create units -- create units
for i = 1, config.UnitCount do for i = 1, config.UnitCount do
table.insert(self.units, unit.new(i, cooling_conf.r_cool[i].BoilerCount, cooling_conf.r_cool[i].TurbineCount, check_rtu_id, config.ExtChargeIdling)) table.insert(self.units, unit.new(i, cooling_conf.r_cool[i].BoilerCount, cooling_conf.r_cool[i].TurbineCount, check_rtu_id, config.ExtChargeIdling))
@ -162,87 +138,6 @@ function facility.new(config, cooling_conf, check_rtu_id)
table.insert(self.test_tone_states, false) table.insert(self.test_tone_states, false)
end end
-- PRIVATE FUNCTIONS --
-- check if all auto-controlled units completed ramping
---@nodiscard
local function _all_units_ramped()
local all_ramped = true
for i = 1, #self.prio_defs do
local units = self.prio_defs[i]
for u = 1, #units do
all_ramped = all_ramped and units[u].auto_ramp_complete()
end
end
return all_ramped
end
-- split a burn rate among the reactors
---@param burn_rate number burn rate assignment
---@param ramp boolean true to ramp, false to set right away
---@param abort_on_fault boolean? true to exit if one device has an effective burn rate different than its limit
---@return integer unallocated_br100, boolean? aborted
local function _allocate_burn_rate(burn_rate, ramp, abort_on_fault)
local unallocated = math.floor(burn_rate * 100)
-- go through all priority groups
for i = 1, #self.prio_defs do
local units = self.prio_defs[i]
if #units > 0 then
local split = math.floor(unallocated / #units)
local splits = {}
for u = 1, #units do splits[u] = split end
splits[#units] = splits[#units] + (unallocated % #units)
-- go through all reactor units in this group
for id = 1, #units do
local u = units[id] ---@type reactor_unit
local ctl = u.get_control_inf()
local lim_br100 = u.auto_get_effective_limit()
if abort_on_fault and (lim_br100 ~= ctl.lim_br100) then
-- effective limit differs from set limit, unit is degraded
return unallocated, true
end
local last = ctl.br100
if splits[id] <= lim_br100 then
ctl.br100 = splits[id]
else
ctl.br100 = lim_br100
if id < #units then
local remaining = #units - id
split = math.floor(unallocated / remaining)
for x = (id + 1), #units do splits[x] = split end
splits[#units] = splits[#units] + (unallocated % remaining)
end
end
unallocated = math.max(0, unallocated - ctl.br100)
if last ~= ctl.br100 then u.auto_commit_br100(ramp) end
end
end
end
return unallocated, false
end
-- set idle state of all assigned reactors
---@param idle boolean idle state
local function _set_idling(idle)
for i = 1, #self.prio_defs do
for _, u in pairs(self.prio_defs[i]) do u.auto_set_idle(idle) end
end
end
-- PUBLIC FUNCTIONS -- -- PUBLIC FUNCTIONS --
---@class facility ---@class facility
@ -304,709 +199,20 @@ function facility.new(config, cooling_conf, check_rtu_id)
-- update (iterate) the facility management -- update (iterate) the facility management
function public.update() function public.update()
-- unlink RTU sessions if they are closed -- run process control and evaluate automatic SCRAM
for _, v in pairs(self.rtu_list) do util.filter_table(v, function (u) return u.is_connected() end) end f_update.pre_auto()
f_update.auto_control(config.ExtChargeIdling)
f_update.auto_safety()
f_update.post_auto()
-- check if test routines are allowed right now -- handle redstone I/O
self.allow_testing = true f_update.redstone(public.ack_all)
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
self.allow_testing = self.allow_testing and u.is_safe_idle()
end
-- current state for process control -- unit tasks
local charge_update = 0 f_update.unit_mgmt(cooling_conf)
local rate_update = 0
-- calculate moving averages for induction matrix -- update alarm tones
if self.induction[1] ~= nil then f_update.update_alarms()
local matrix = self.induction[1] ---@type unit_session
local db = matrix.get_db() ---@type imatrix_session_db
local build_update = db.build.last_update
rate_update = db.state.last_update
charge_update = db.tanks.last_update
local has_data = build_update > 0 and rate_update > 0 and charge_update > 0
if matrix.is_faulted() then
-- a fault occured, cannot reliably update stats
has_data = false
self.im_stat_init = false
self.imtx_faulted_times = { build_update, rate_update, charge_update }
elseif not self.im_stat_init then
-- prevent operation with partially invalid data
-- all fields must have updated since the last fault
has_data = self.imtx_faulted_times[1] < build_update and
self.imtx_faulted_times[2] < rate_update and
self.imtx_faulted_times[3] < charge_update
end
if has_data then
local energy = util.joules_to_fe_rf(db.tanks.energy)
local input = util.joules_to_fe_rf(db.state.last_input)
local output = util.joules_to_fe_rf(db.state.last_output)
if self.im_stat_init then
self.avg_charge.record(energy, charge_update)
self.avg_inflow.record(input, rate_update)
self.avg_outflow.record(output, rate_update)
if charge_update ~= self.imtx_last_charge_t then
local delta = (energy - self.imtx_last_charge) / (charge_update - self.imtx_last_charge_t)
self.imtx_last_charge = energy
self.imtx_last_charge_t = charge_update
-- if the capacity changed, toss out existing data
if db.build.max_energy ~= self.imtx_last_capacity then
self.imtx_last_capacity = db.build.max_energy
self.avg_net.reset()
else
self.avg_net.record(delta, charge_update)
end
end
else
self.im_stat_init = true
self.avg_charge.reset(energy)
self.avg_inflow.reset(input)
self.avg_outflow.reset(output)
self.avg_net.reset()
self.imtx_last_capacity = db.build.max_energy
self.imtx_last_charge = energy
self.imtx_last_charge_t = charge_update
end
else
-- prevent use by control systems
rate_update = 0
charge_update = 0
end
else
self.im_stat_init = false
end
self.all_sys_ok = true
for i = 1, #self.units do
self.all_sys_ok = self.all_sys_ok and not self.units[i].get_control_inf().degraded
end
-------------------------
-- Run Process Control --
-------------------------
--#region
local avg_charge = self.avg_charge.compute()
local avg_inflow = self.avg_inflow.compute()
local avg_outflow = self.avg_outflow.compute()
local now = os.clock()
local state_changed = self.mode ~= self.last_mode
local next_mode = self.mode
-- once auto control is started, sort the priority sublists by limits
if state_changed then
self.saturated = false
log.debug(util.c("FAC: state changed from ", PROCESS_NAMES[self.last_mode + 1], " to ", PROCESS_NAMES[self.mode + 1]))
if (self.last_mode == PROCESS.INACTIVE) or (self.last_mode == PROCESS.GEN_RATE_FAULT_IDLE) then
self.start_fail = START_STATUS.OK
if (self.mode ~= PROCESS.MATRIX_FAULT_IDLE) and (self.mode ~= PROCESS.SYSTEM_ALARM_IDLE) then
-- auto clear ASCRAM
self.ascram = false
self.ascram_reason = AUTO_SCRAM.NONE
end
local blade_count = nil
self.max_burn_combined = 0.0
for i = 1, #self.prio_defs do
table.sort(self.prio_defs[i],
---@param a reactor_unit
---@param b reactor_unit
function (a, b) return a.get_control_inf().lim_br100 < b.get_control_inf().lim_br100 end
)
for _, u in pairs(self.prio_defs[i]) do
local u_blade_count = u.get_control_inf().blade_count
if blade_count == nil then
blade_count = u_blade_count
elseif (u_blade_count ~= blade_count) and (self.mode == PROCESS.GEN_RATE) then
log.warning("FAC: cannot start GEN_RATE process with inconsistent unit blade counts")
next_mode = PROCESS.INACTIVE
self.start_fail = START_STATUS.BLADE_MISMATCH
end
if self.start_fail == START_STATUS.OK then u.auto_engage() end
self.max_burn_combined = self.max_burn_combined + (u.get_control_inf().lim_br100 / 100.0)
end
end
log.debug(util.c("FAC: computed a max combined burn rate of ", self.max_burn_combined, "mB/t"))
if blade_count == nil then
-- no units
log.warning("FAC: cannot start process control with 0 units assigned")
next_mode = PROCESS.INACTIVE
self.start_fail = START_STATUS.NO_UNITS
else
self.charge_conversion = blade_count * POWER_PER_BLADE
end
elseif self.mode == PROCESS.INACTIVE then
for i = 1, #self.prio_defs do
-- disable reactors and disengage auto control
for _, u in pairs(self.prio_defs[i]) do
u.disable()
u.auto_set_idle(false)
u.auto_disengage()
end
end
log.info("FAC: disengaging auto control (now inactive)")
end
self.initial_ramp = true
self.waiting_on_ramp = false
self.waiting_on_stable = false
else
self.initial_ramp = false
end
-- update unit ready state
local assign_count = 0
self.units_ready = true
for i = 1, #self.prio_defs do
for _, u in pairs(self.prio_defs[i]) do
assign_count = assign_count + 1
self.units_ready = self.units_ready and u.get_control_inf().ready
end
end
-- perform mode-specific operations
if self.mode == PROCESS.INACTIVE then
if not self.units_ready then
self.status_text = { "NOT READY", "assigned units not ready" }
else
-- clear ASCRAM once ready
self.ascram = false
self.ascram_reason = AUTO_SCRAM.NONE
if self.start_fail == START_STATUS.NO_UNITS and assign_count == 0 then
self.status_text = { "START FAILED", "no units were assigned" }
elseif self.start_fail == START_STATUS.BLADE_MISMATCH then
self.status_text = { "START FAILED", "turbine blade count mismatch" }
else
self.status_text = { "IDLE", "control disengaged" }
end
end
elseif self.mode == PROCESS.MAX_BURN then
-- run units at their limits
if state_changed then
self.time_start = now
self.saturated = true
self.status_text = { "MONITORED MODE", "running reactors at limit" }
log.info("FAC: MAX_BURN process mode started")
end
_allocate_burn_rate(self.max_burn_combined, true)
elseif self.mode == PROCESS.BURN_RATE then
-- a total aggregate burn rate
if state_changed then
self.time_start = now
self.status_text = { "BURN RATE MODE", "running" }
log.info("FAC: BURN_RATE process mode started")
end
local unallocated = _allocate_burn_rate(self.burn_target, true)
self.saturated = self.burn_target == self.max_burn_combined or unallocated > 0
elseif self.mode == PROCESS.CHARGE then
-- target a level of charge
if state_changed then
self.time_start = now
self.last_time = now
self.last_error = 0
self.accumulator = 0
-- enabling idling on all assigned units
_set_idling(true)
self.status_text = { "CHARGE MODE", "running control loop" }
log.info("FAC: CHARGE mode starting PID control")
elseif self.last_update < charge_update then
-- convert to kFE to make constants not microscopic
local error = util.round((self.charge_setpoint - avg_charge) / 1000) / 1000
-- stop accumulator when saturated to avoid windup
if not self.saturated then
self.accumulator = self.accumulator + (error * (now - self.last_time))
end
-- local runtime = now - self.time_start
local integral = self.accumulator
local derivative = (error - self.last_error) / (now - self.last_time)
local P = charge_Kp * error
local I = charge_Ki * integral
local D = charge_Kd * derivative
local output = P + I + D
-- clamp at range -> output clamped (out_c)
local out_c = math.max(0, math.min(output, self.max_burn_combined))
self.saturated = output ~= out_c
if not config.ExtChargeIdling then
-- stop idling early if the output is zero, we are at or above the setpoint, and are not losing charge
_set_idling(not ((out_c == 0) and (error <= 0) and (avg_outflow <= 0)))
end
-- log.debug(util.sprintf("CHARGE[%f] { CHRG[%f] ERR[%f] INT[%f] => OUT[%f] OUT_C[%f] <= P[%f] I[%f] D[%f] }",
-- runtime, avg_charge, error, integral, output, out_c, P, I, D))
_allocate_burn_rate(out_c, true)
self.last_time = now
self.last_error = error
end
self.last_update = charge_update
elseif self.mode == PROCESS.GEN_RATE then
-- target a rate of generation
if state_changed then
-- estimate an initial output
local output = self.gen_rate_setpoint / self.charge_conversion
local unallocated = _allocate_burn_rate(output, true)
self.saturated = output >= self.max_burn_combined or unallocated > 0
self.waiting_on_ramp = true
self.status_text = { "GENERATION MODE", "starting up" }
log.info(util.c("FAC: GEN_RATE process mode initial ramp started (initial target is ", output, " mB/t)"))
elseif self.waiting_on_ramp then
if _all_units_ramped() then
self.waiting_on_ramp = false
self.waiting_on_stable = true
self.time_start = now
self.status_text = { "GENERATION MODE", "holding ramped rate" }
log.info("FAC: GEN_RATE process mode initial ramp completed, holding for stablization time")
end
elseif self.waiting_on_stable then
if (now - self.time_start) > FLOW_STABILITY_DELAY_S then
self.waiting_on_stable = false
self.time_start = now
self.last_time = now
self.last_error = 0
self.accumulator = 0
self.status_text = { "GENERATION MODE", "running control loop" }
log.info("FAC: GEN_RATE process mode initial hold completed, starting PID control")
end
elseif self.last_update < rate_update then
-- convert to MFE (in rounded kFE) to make constants not microscopic
local error = util.round((self.gen_rate_setpoint - avg_inflow) / 1000) / 1000
-- stop accumulator when saturated to avoid windup
if not self.saturated then
self.accumulator = self.accumulator + (error * (now - self.last_time))
end
-- local runtime = now - self.time_start
local integral = self.accumulator
local derivative = (error - self.last_error) / (now - self.last_time)
local P = rate_Kp * error
local I = rate_Ki * integral
local D = rate_Kd * derivative
-- velocity (rate) (derivative of charge level => rate) feed forward
local FF = self.gen_rate_setpoint / self.charge_conversion
local output = P + I + D + FF
-- clamp at range -> output clamped (sp_c)
local out_c = math.max(0, math.min(output, self.max_burn_combined))
self.saturated = output ~= out_c
-- log.debug(util.sprintf("GEN_RATE[%f] { RATE[%f] ERR[%f] INT[%f] => OUT[%f] OUT_C[%f] <= P[%f] I[%f] D[%f] }",
-- runtime, avg_inflow, error, integral, output, out_c, P, I, D))
_allocate_burn_rate(out_c, false)
self.last_time = now
self.last_error = error
end
self.last_update = rate_update
elseif self.mode == PROCESS.MATRIX_FAULT_IDLE then
-- exceeded charge, wait until condition clears
if self.ascram_reason == AUTO_SCRAM.NONE then
next_mode = self.return_mode
log.info("FAC: exiting matrix fault idle state due to fault resolution")
elseif self.ascram_reason == AUTO_SCRAM.CRIT_ALARM then
next_mode = PROCESS.SYSTEM_ALARM_IDLE
log.info("FAC: exiting matrix fault idle state due to critical unit alarm")
end
elseif self.mode == PROCESS.SYSTEM_ALARM_IDLE then
-- do nothing, wait for user to confirm (stop and reset)
elseif self.mode == PROCESS.GEN_RATE_FAULT_IDLE then
-- system faulted (degraded/not ready) while running generation rate mode
-- mode will need to be fully restarted once everything is OK to re-ramp to feed-forward
if self.units_ready then
log.info("FAC: system ready after faulting out of GEN_RATE process mode, switching back...")
next_mode = PROCESS.GEN_RATE
end
elseif self.mode ~= PROCESS.INACTIVE then
log.error(util.c("FAC: unsupported process mode ", self.mode, ", switching to inactive"))
next_mode = PROCESS.INACTIVE
end
--#endregion
------------------------------
-- Evaluate Automatic SCRAM --
------------------------------
--#region
local astatus = self.ascram_status
if self.induction[1] ~= nil then
local db = self.induction[1].get_db() ---@type imatrix_session_db
-- clear matrix disconnected
if astatus.matrix_dc then
astatus.matrix_dc = false
log.info("FAC: induction matrix reconnected, clearing ASCRAM condition")
end
-- check matrix fill too high
local was_fill = astatus.matrix_fill
astatus.matrix_fill = (db.tanks.energy_fill >= ALARM_LIMS.CHARGE_HIGH) or (astatus.matrix_fill and db.tanks.energy_fill > ALARM_LIMS.CHARGE_RE_ENABLE)
if was_fill and not astatus.matrix_fill then
log.info(util.c("FAC: charge state of induction matrix entered acceptable range <= ", ALARM_LIMS.CHARGE_RE_ENABLE * 100, "%"))
end
-- check for critical unit alarms
astatus.crit_alarm = false
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
if u.has_alarm_min_prio(PRIO.CRITICAL) then
astatus.crit_alarm = true
break
end
end
-- check for facility radiation
if #self.envd > 0 then
local max_rad = 0
for i = 1, #self.envd do
local envd = self.envd[i] ---@type unit_session
local e_db = envd.get_db() ---@type envd_session_db
if e_db.radiation_raw > max_rad then max_rad = e_db.radiation_raw end
end
astatus.radiation = max_rad >= ALARM_LIMS.FAC_HIGH_RAD
else
-- don't clear, if it is true then we lost it with high radiation, so just keep alarming
-- operator can restart the system or hit the stop/reset button
end
-- system not ready, will need to restart GEN_RATE mode
-- clears when we enter the fault waiting state
astatus.gen_fault = self.mode == PROCESS.GEN_RATE and not self.units_ready
else
astatus.matrix_dc = true
end
if (self.mode ~= PROCESS.INACTIVE) and (self.mode ~= PROCESS.SYSTEM_ALARM_IDLE) then
local scram = astatus.matrix_dc or astatus.matrix_fill or astatus.crit_alarm or astatus.gen_fault
if scram and not self.ascram then
-- SCRAM all units
for i = 1, #self.prio_defs do
for _, u in pairs(self.prio_defs[i]) do
u.auto_scram()
end
end
if astatus.crit_alarm then
-- highest priority alarm
next_mode = PROCESS.SYSTEM_ALARM_IDLE
self.ascram_reason = AUTO_SCRAM.CRIT_ALARM
self.status_text = { "AUTOMATIC SCRAM", "critical unit alarm tripped" }
log.info("FAC: automatic SCRAM due to critical unit alarm")
log.warning("FAC: emergency exit of process control due to critical unit alarm")
elseif astatus.radiation then
next_mode = PROCESS.SYSTEM_ALARM_IDLE
self.ascram_reason = AUTO_SCRAM.RADIATION
self.status_text = { "AUTOMATIC SCRAM", "facility radiation high" }
log.info("FAC: automatic SCRAM due to high facility radiation")
elseif astatus.matrix_dc then
next_mode = PROCESS.MATRIX_FAULT_IDLE
self.ascram_reason = AUTO_SCRAM.MATRIX_DC
self.status_text = { "AUTOMATIC SCRAM", "induction matrix disconnected" }
if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then self.return_mode = self.mode end
log.info("FAC: automatic SCRAM due to induction matrix disconnection")
elseif astatus.matrix_fill then
next_mode = PROCESS.MATRIX_FAULT_IDLE
self.ascram_reason = AUTO_SCRAM.MATRIX_FILL
self.status_text = { "AUTOMATIC SCRAM", "induction matrix fill high" }
if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then self.return_mode = self.mode end
log.info("FAC: automatic SCRAM due to induction matrix high charge")
elseif astatus.gen_fault then
-- lowest priority alarm
next_mode = PROCESS.GEN_RATE_FAULT_IDLE
self.ascram_reason = AUTO_SCRAM.GEN_FAULT
self.status_text = { "GENERATION MODE IDLE", "paused: system not ready" }
log.info("FAC: automatic SCRAM due to unit problem while in GEN_RATE mode, will resume once all units are ready")
end
end
self.ascram = scram
if not self.ascram then
self.ascram_reason = AUTO_SCRAM.NONE
-- reset PLC RPS trips if we should
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
u.auto_cond_rps_reset()
end
end
end
--#endregion
-- update last mode and set next mode
self.last_mode = self.mode
self.mode = next_mode
-------------------------
-- Handle Redstone I/O --
-------------------------
--#region
if #self.redstone > 0 then
-- handle facility SCRAM
if self.io_ctl.digital_read(IO.F_SCRAM) then
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
u.cond_scram()
end
end
-- handle facility ack
if self.io_ctl.digital_read(IO.F_ACK) then public.ack_all() end
-- update facility alarm outputs
local has_prio_alarm, has_any_alarm = false, false
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
if u.has_alarm_min_prio(PRIO.EMERGENCY) then
has_prio_alarm, has_any_alarm = true, true
break
elseif u.has_alarm_min_prio(PRIO.TIMELY) then
has_any_alarm = true
end
end
self.io_ctl.digital_write(IO.F_ALARM, has_prio_alarm)
self.io_ctl.digital_write(IO.F_ALARM_ANY, has_any_alarm)
-- update induction matrix related outputs
if self.induction[1] ~= nil then
local db = self.induction[1].get_db() ---@type imatrix_session_db
self.io_ctl.digital_write(IO.F_MATRIX_LOW, db.tanks.energy_fill < const.RS_THRESHOLDS.IMATRIX_CHARGE_LOW)
self.io_ctl.digital_write(IO.F_MATRIX_HIGH, db.tanks.energy_fill > const.RS_THRESHOLDS.IMATRIX_CHARGE_HIGH)
self.io_ctl.analog_write(IO.F_MATRIX_CHG, db.tanks.energy_fill, 0, 1)
end
end
--#endregion
----------------
-- Unit Tasks --
----------------
--#region
local insufficent_po_rate = false
local need_emcool = false
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
-- update auto waste processing
if u.get_control_inf().waste_mode == WASTE_MODE.AUTO then
if (u.get_sna_rate() * 10.0) < u.get_burn_rate() then
insufficent_po_rate = true
end
end
-- check if unit activated emergency coolant & uses facility tanks
if (cooling_conf.fac_tank_mode > 0) and u.is_emer_cool_tripped() and (cooling_conf.fac_tank_defs[i] == 2) then
need_emcool = true
end
end
-- update waste product
self.current_waste_product = self.waste_product
if (not self.sps_low_power) and (self.waste_product == WASTE.ANTI_MATTER) and (self.induction[1] ~= nil) then
local db = self.induction[1].get_db() ---@type imatrix_session_db
if db.tanks.energy_fill >= 0.15 then
self.disabled_sps = false
elseif self.disabled_sps or ((db.tanks.last_update > 0) and (db.tanks.energy_fill < 0.1)) then
self.disabled_sps = true
self.current_waste_product = WASTE.POLONIUM
end
else
self.disabled_sps = false
end
if self.pu_fallback and insufficent_po_rate then
self.current_waste_product = WASTE.PLUTONIUM
end
-- make sure dynamic tanks are allowing outflow if required
-- set all, rather than trying to determine which is for which (simpler & safer)
-- there should be no need for any to be in fill only mode
if need_emcool then
for i = 1, #self.tanks do
local session = self.tanks[i] ---@type unit_session
local tank = session.get_db() ---@type dynamicv_session_db
if tank.state.container_mode == CONTAINER_MODE.FILL then
session.get_cmd_queue().push_data(DTV_RTU_S_DATA.SET_CONT_MODE, CONTAINER_MODE.BOTH)
end
end
end
--#endregion
------------------------
-- Update Alarm Tones --
------------------------
--#region
local allow_test = self.allow_testing and self.test_tone_set
local alarms = { false, false, false, false, false, false, false, false, false, false, false, false }
-- reset tone states before re-evaluting
for i = 1, #self.tone_states do self.tone_states[i] = false end
if allow_test then
alarms = self.test_alarm_states
else
-- check all alarms for all units
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
for id, alarm in pairs(u.get_alarms()) do
alarms[id] = alarms[id] or (alarm == ALARM_STATE.TRIPPED)
end
end
if not self.test_tone_reset then
-- clear testing alarms if we aren't using them
for i = 1, #self.test_alarm_states do self.test_alarm_states[i] = false end
end
end
-- Evaluate Alarms --
-- containment breach is worst case CRITICAL alarm, this takes priority
if alarms[ALARM.ContainmentBreach] then
self.tone_states[TONE.T_1800Hz_Int_4Hz] = true
else
-- critical damage is highest priority CRITICAL level alarm
if alarms[ALARM.CriticalDamage] then
self.tone_states[TONE.T_660Hz_Int_125ms] = true
else
-- EMERGENCY level alarms + URGENT over temp
if alarms[ALARM.ReactorDamage] or alarms[ALARM.ReactorOverTemp] or alarms[ALARM.ReactorWasteLeak] then
self.tone_states[TONE.T_544Hz_440Hz_Alt] = true
-- URGENT level turbine trip
elseif alarms[ALARM.TurbineTrip] then
self.tone_states[TONE.T_745Hz_Int_1Hz] = true
-- URGENT level reactor lost
elseif alarms[ALARM.ReactorLost] then
self.tone_states[TONE.T_340Hz_Int_2Hz] = true
-- TIMELY level alarms
elseif alarms[ALARM.ReactorHighTemp] or alarms[ALARM.ReactorHighWaste] or alarms[ALARM.RCSTransient] then
self.tone_states[TONE.T_800Hz_Int] = true
end
end
-- check RPS transient URGENT level alarm
if alarms[ALARM.RPSTransient] then
self.tone_states[TONE.T_1000Hz_Int] = true
-- disable really painful audio combination
self.tone_states[TONE.T_340Hz_Int_2Hz] = false
end
end
-- radiation is a big concern, always play this CRITICAL level alarm if active
if alarms[ALARM.ContainmentRadiation] then
self.tone_states[TONE.T_800Hz_1000Hz_Alt] = true
-- we are going to disable the RPS trip alarm audio due to conflict, and if it was enabled
-- then we can re-enable the reactor lost alarm audio since it doesn't painfully combine with this one
if self.tone_states[TONE.T_1000Hz_Int] and alarms[ALARM.ReactorLost] then self.tone_states[TONE.T_340Hz_Int_2Hz] = true end
-- it sounds *really* bad if this is in conjunction with these other tones, so disable them
self.tone_states[TONE.T_745Hz_Int_1Hz] = false
self.tone_states[TONE.T_800Hz_Int] = false
self.tone_states[TONE.T_1000Hz_Int] = false
end
-- add to tone states if testing is active
if allow_test then
for i = 1, #self.tone_states do
self.tone_states[i] = self.tone_states[i] or self.test_tone_states[i]
end
self.test_tone_reset = false
else
if not self.test_tone_reset then
-- clear testing tones if we aren't using them
for i = 1, #self.test_tone_states do self.test_tone_states[i] = false end
end
-- flag that tones were reset
self.test_tone_set = false
self.test_tone_reset = true
end
--#endregion
end end
-- call the update function of all units in the facility<br> -- call the update function of all units in the facility<br>

View File

@ -0,0 +1,831 @@
local audio = require("scada-common.audio")
local const = require("scada-common.constants")
local log = require("scada-common.log")
local rsio = require("scada-common.rsio")
local types = require("scada-common.types")
local util = require("scada-common.util")
local qtypes = require("supervisor.session.rtu.qtypes")
local TONE = audio.TONE
local ALARM = types.ALARM
local PRIO = types.ALARM_PRIORITY
local ALARM_STATE = types.ALARM_STATE
local CONTAINER_MODE = types.CONTAINER_MODE
local PROCESS = types.PROCESS
local PROCESS_NAMES = types.PROCESS_NAMES
local WASTE_MODE = types.WASTE_MODE
local WASTE = types.WASTE_PRODUCT
local IO = rsio.IO
local ALARM_LIMS = const.ALARM_LIMITS
local DTV_RTU_S_DATA = qtypes.DTV_RTU_S_DATA
-- 7.14 kJ per blade for 1 mB of fissile fuel<br>
-- 2856 FE per blade per 1 mB, 285.6 FE per blade per 0.1 mB (minimum)
local POWER_PER_BLADE = util.joules_to_fe_rf(7140)
local FLOW_STABILITY_DELAY_S = const.FLOW_STABILITY_DELAY_MS / 1000
local CHARGE_Kp = 0.15
local CHARGE_Ki = 0.0
local CHARGE_Kd = 0.6
local RATE_Kp = 2.45
local RATE_Ki = 0.4825
local RATE_Kd = -1.0
local self = nil ---@type _facility_self
local next_mode = 0
local charge_update = 0
local rate_update = 0
local update = {}
--#region PRIVATE FUNCTIONS
-- check if all auto-controlled units completed ramping
---@nodiscard
local function all_units_ramped()
local all_ramped = true
for i = 1, #self.prio_defs do
local units = self.prio_defs[i]
for u = 1, #units do
all_ramped = all_ramped and units[u].auto_ramp_complete()
end
end
return all_ramped
end
-- split a burn rate among the reactors
---@param burn_rate number burn rate assignment
---@param ramp boolean true to ramp, false to set right away
---@param abort_on_fault boolean? true to exit if one device has an effective burn rate different than its limit
---@return integer unallocated_br100, boolean? aborted
local function allocate_burn_rate(burn_rate, ramp, abort_on_fault)
local unallocated = math.floor(burn_rate * 100)
-- go through all priority groups
for i = 1, #self.prio_defs do
local units = self.prio_defs[i]
if #units > 0 then
local split = math.floor(unallocated / #units)
local splits = {}
for u = 1, #units do splits[u] = split end
splits[#units] = splits[#units] + (unallocated % #units)
-- go through all reactor units in this group
for id = 1, #units do
local u = units[id] ---@type reactor_unit
local ctl = u.get_control_inf()
local lim_br100 = u.auto_get_effective_limit()
if abort_on_fault and (lim_br100 ~= ctl.lim_br100) then
-- effective limit differs from set limit, unit is degraded
return unallocated, true
end
local last = ctl.br100
if splits[id] <= lim_br100 then
ctl.br100 = splits[id]
else
ctl.br100 = lim_br100
if id < #units then
local remaining = #units - id
split = math.floor(unallocated / remaining)
for x = (id + 1), #units do splits[x] = split end
splits[#units] = splits[#units] + (unallocated % remaining)
end
end
unallocated = math.max(0, unallocated - ctl.br100)
if last ~= ctl.br100 then u.auto_commit_br100(ramp) end
end
end
end
return unallocated, false
end
-- set idle state of all assigned reactors
---@param idle boolean idle state
local function set_idling(idle)
for i = 1, #self.prio_defs do
for _, u in pairs(self.prio_defs[i]) do u.auto_set_idle(idle) end
end
end
--#endregion
--#region PUBLIC FUNCTIONS
-- automatic control pre-update logic
function update.pre_auto()
-- unlink RTU sessions if they are closed
for _, v in pairs(self.rtu_list) do util.filter_table(v, function (u) return u.is_connected() end) end
-- check if test routines are allowed right now
self.allow_testing = true
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
self.allow_testing = self.allow_testing and u.is_safe_idle()
end
-- current state for process control
charge_update = 0
rate_update = 0
-- calculate moving averages for induction matrix
if self.induction[1] ~= nil then
local matrix = self.induction[1] ---@type unit_session
local db = matrix.get_db() ---@type imatrix_session_db
local build_update = db.build.last_update
rate_update = db.state.last_update
charge_update = db.tanks.last_update
local has_data = build_update > 0 and rate_update > 0 and charge_update > 0
if matrix.is_faulted() then
-- a fault occured, cannot reliably update stats
has_data = false
self.im_stat_init = false
self.imtx_faulted_times = { build_update, rate_update, charge_update }
elseif not self.im_stat_init then
-- prevent operation with partially invalid data
-- all fields must have updated since the last fault
has_data = self.imtx_faulted_times[1] < build_update and
self.imtx_faulted_times[2] < rate_update and
self.imtx_faulted_times[3] < charge_update
end
if has_data then
local energy = util.joules_to_fe_rf(db.tanks.energy)
local input = util.joules_to_fe_rf(db.state.last_input)
local output = util.joules_to_fe_rf(db.state.last_output)
if self.im_stat_init then
self.avg_charge.record(energy, charge_update)
self.avg_inflow.record(input, rate_update)
self.avg_outflow.record(output, rate_update)
if charge_update ~= self.imtx_last_charge_t then
local delta = (energy - self.imtx_last_charge) / (charge_update - self.imtx_last_charge_t)
self.imtx_last_charge = energy
self.imtx_last_charge_t = charge_update
-- if the capacity changed, toss out existing data
if db.build.max_energy ~= self.imtx_last_capacity then
self.imtx_last_capacity = db.build.max_energy
self.avg_net.reset()
else
self.avg_net.record(delta, charge_update)
end
end
else
self.im_stat_init = true
self.avg_charge.reset(energy)
self.avg_inflow.reset(input)
self.avg_outflow.reset(output)
self.avg_net.reset()
self.imtx_last_capacity = db.build.max_energy
self.imtx_last_charge = energy
self.imtx_last_charge_t = charge_update
end
else
-- prevent use by control systems
rate_update = 0
charge_update = 0
end
else
self.im_stat_init = false
end
self.all_sys_ok = true
for i = 1, #self.units do
self.all_sys_ok = self.all_sys_ok and not self.units[i].get_control_inf().degraded
end
end
-- run auto control
---@param ExtChargeIdling boolean ExtChargeIdling config field
function update.auto_control(ExtChargeIdling)
local AUTO_SCRAM = self.types.AUTO_SCRAM
local START_STATUS = self.types.START_STATUS
local avg_charge = self.avg_charge.compute()
local avg_inflow = self.avg_inflow.compute()
local avg_outflow = self.avg_outflow.compute()
local now = os.clock()
local state_changed = self.mode ~= self.last_mode
next_mode = self.mode
-- once auto control is started, sort the priority sublists by limits
if state_changed then
self.saturated = false
log.debug(util.c("FAC: state changed from ", PROCESS_NAMES[self.last_mode + 1], " to ", PROCESS_NAMES[self.mode + 1]))
if (self.last_mode == PROCESS.INACTIVE) or (self.last_mode == PROCESS.GEN_RATE_FAULT_IDLE) then
self.start_fail = START_STATUS.OK
if (self.mode ~= PROCESS.MATRIX_FAULT_IDLE) and (self.mode ~= PROCESS.SYSTEM_ALARM_IDLE) then
-- auto clear ASCRAM
self.ascram = false
self.ascram_reason = AUTO_SCRAM.NONE
end
local blade_count = nil
self.max_burn_combined = 0.0
for i = 1, #self.prio_defs do
table.sort(self.prio_defs[i],
---@param a reactor_unit
---@param b reactor_unit
function (a, b) return a.get_control_inf().lim_br100 < b.get_control_inf().lim_br100 end
)
for _, u in pairs(self.prio_defs[i]) do
local u_blade_count = u.get_control_inf().blade_count
if blade_count == nil then
blade_count = u_blade_count
elseif (u_blade_count ~= blade_count) and (self.mode == PROCESS.GEN_RATE) then
log.warning("FAC: cannot start GEN_RATE process with inconsistent unit blade counts")
next_mode = PROCESS.INACTIVE
self.start_fail = START_STATUS.BLADE_MISMATCH
end
if self.start_fail == START_STATUS.OK then u.auto_engage() end
self.max_burn_combined = self.max_burn_combined + (u.get_control_inf().lim_br100 / 100.0)
end
end
log.debug(util.c("FAC: computed a max combined burn rate of ", self.max_burn_combined, "mB/t"))
if blade_count == nil then
-- no units
log.warning("FAC: cannot start process control with 0 units assigned")
next_mode = PROCESS.INACTIVE
self.start_fail = START_STATUS.NO_UNITS
else
self.charge_conversion = blade_count * POWER_PER_BLADE
end
elseif self.mode == PROCESS.INACTIVE then
for i = 1, #self.prio_defs do
-- disable reactors and disengage auto control
for _, u in pairs(self.prio_defs[i]) do
u.disable()
u.auto_set_idle(false)
u.auto_disengage()
end
end
log.info("FAC: disengaging auto control (now inactive)")
end
self.initial_ramp = true
self.waiting_on_ramp = false
self.waiting_on_stable = false
else
self.initial_ramp = false
end
-- update unit ready state
local assign_count = 0
self.units_ready = true
for i = 1, #self.prio_defs do
for _, u in pairs(self.prio_defs[i]) do
assign_count = assign_count + 1
self.units_ready = self.units_ready and u.get_control_inf().ready
end
end
-- perform mode-specific operations
if self.mode == PROCESS.INACTIVE then
if not self.units_ready then
self.status_text = { "NOT READY", "assigned units not ready" }
else
-- clear ASCRAM once ready
self.ascram = false
self.ascram_reason = AUTO_SCRAM.NONE
if self.start_fail == START_STATUS.NO_UNITS and assign_count == 0 then
self.status_text = { "START FAILED", "no units were assigned" }
elseif self.start_fail == START_STATUS.BLADE_MISMATCH then
self.status_text = { "START FAILED", "turbine blade count mismatch" }
else
self.status_text = { "IDLE", "control disengaged" }
end
end
elseif self.mode == PROCESS.MAX_BURN then
-- run units at their limits
if state_changed then
self.time_start = now
self.saturated = true
self.status_text = { "MONITORED MODE", "running reactors at limit" }
log.info("FAC: MAX_BURN process mode started")
end
allocate_burn_rate(self.max_burn_combined, true)
elseif self.mode == PROCESS.BURN_RATE then
-- a total aggregate burn rate
if state_changed then
self.time_start = now
self.status_text = { "BURN RATE MODE", "running" }
log.info("FAC: BURN_RATE process mode started")
end
local unallocated = allocate_burn_rate(self.burn_target, true)
self.saturated = self.burn_target == self.max_burn_combined or unallocated > 0
elseif self.mode == PROCESS.CHARGE then
-- target a level of charge
if state_changed then
self.time_start = now
self.last_time = now
self.last_error = 0
self.accumulator = 0
-- enabling idling on all assigned units
set_idling(true)
self.status_text = { "CHARGE MODE", "running control loop" }
log.info("FAC: CHARGE mode starting PID control")
elseif self.last_update < charge_update then
-- convert to kFE to make constants not microscopic
local error = util.round((self.charge_setpoint - avg_charge) / 1000) / 1000
-- stop accumulator when saturated to avoid windup
if not self.saturated then
self.accumulator = self.accumulator + (error * (now - self.last_time))
end
-- local runtime = now - self.time_start
local integral = self.accumulator
local derivative = (error - self.last_error) / (now - self.last_time)
local P = CHARGE_Kp * error
local I = CHARGE_Ki * integral
local D = CHARGE_Kd * derivative
local output = P + I + D
-- clamp at range -> output clamped (out_c)
local out_c = math.max(0, math.min(output, self.max_burn_combined))
self.saturated = output ~= out_c
if not ExtChargeIdling then
-- stop idling early if the output is zero, we are at or above the setpoint, and are not losing charge
set_idling(not ((out_c == 0) and (error <= 0) and (avg_outflow <= 0)))
end
-- log.debug(util.sprintf("CHARGE[%f] { CHRG[%f] ERR[%f] INT[%f] => OUT[%f] OUT_C[%f] <= P[%f] I[%f] D[%f] }",
-- runtime, avg_charge, error, integral, output, out_c, P, I, D))
allocate_burn_rate(out_c, true)
self.last_time = now
self.last_error = error
end
self.last_update = charge_update
elseif self.mode == PROCESS.GEN_RATE then
-- target a rate of generation
if state_changed then
-- estimate an initial output
local output = self.gen_rate_setpoint / self.charge_conversion
local unallocated = allocate_burn_rate(output, true)
self.saturated = output >= self.max_burn_combined or unallocated > 0
self.waiting_on_ramp = true
self.status_text = { "GENERATION MODE", "starting up" }
log.info(util.c("FAC: GEN_RATE process mode initial ramp started (initial target is ", output, " mB/t)"))
elseif self.waiting_on_ramp then
if all_units_ramped() then
self.waiting_on_ramp = false
self.waiting_on_stable = true
self.time_start = now
self.status_text = { "GENERATION MODE", "holding ramped rate" }
log.info("FAC: GEN_RATE process mode initial ramp completed, holding for stablization time")
end
elseif self.waiting_on_stable then
if (now - self.time_start) > FLOW_STABILITY_DELAY_S then
self.waiting_on_stable = false
self.time_start = now
self.last_time = now
self.last_error = 0
self.accumulator = 0
self.status_text = { "GENERATION MODE", "running control loop" }
log.info("FAC: GEN_RATE process mode initial hold completed, starting PID control")
end
elseif self.last_update < rate_update then
-- convert to MFE (in rounded kFE) to make constants not microscopic
local error = util.round((self.gen_rate_setpoint - avg_inflow) / 1000) / 1000
-- stop accumulator when saturated to avoid windup
if not self.saturated then
self.accumulator = self.accumulator + (error * (now - self.last_time))
end
-- local runtime = now - self.time_start
local integral = self.accumulator
local derivative = (error - self.last_error) / (now - self.last_time)
local P = RATE_Kp * error
local I = RATE_Ki * integral
local D = RATE_Kd * derivative
-- velocity (rate) (derivative of charge level => rate) feed forward
local FF = self.gen_rate_setpoint / self.charge_conversion
local output = P + I + D + FF
-- clamp at range -> output clamped (sp_c)
local out_c = math.max(0, math.min(output, self.max_burn_combined))
self.saturated = output ~= out_c
-- log.debug(util.sprintf("GEN_RATE[%f] { RATE[%f] ERR[%f] INT[%f] => OUT[%f] OUT_C[%f] <= P[%f] I[%f] D[%f] }",
-- runtime, avg_inflow, error, integral, output, out_c, P, I, D))
allocate_burn_rate(out_c, false)
self.last_time = now
self.last_error = error
end
self.last_update = rate_update
elseif self.mode == PROCESS.MATRIX_FAULT_IDLE then
-- exceeded charge, wait until condition clears
if self.ascram_reason == AUTO_SCRAM.NONE then
next_mode = self.return_mode
log.info("FAC: exiting matrix fault idle state due to fault resolution")
elseif self.ascram_reason == AUTO_SCRAM.CRIT_ALARM then
next_mode = PROCESS.SYSTEM_ALARM_IDLE
log.info("FAC: exiting matrix fault idle state due to critical unit alarm")
end
elseif self.mode == PROCESS.SYSTEM_ALARM_IDLE then
-- do nothing, wait for user to confirm (stop and reset)
elseif self.mode == PROCESS.GEN_RATE_FAULT_IDLE then
-- system faulted (degraded/not ready) while running generation rate mode
-- mode will need to be fully restarted once everything is OK to re-ramp to feed-forward
if self.units_ready then
log.info("FAC: system ready after faulting out of GEN_RATE process mode, switching back...")
next_mode = PROCESS.GEN_RATE
end
elseif self.mode ~= PROCESS.INACTIVE then
log.error(util.c("FAC: unsupported process mode ", self.mode, ", switching to inactive"))
next_mode = PROCESS.INACTIVE
end
end
-- update automatic safety logic
function update.auto_safety()
local AUTO_SCRAM = self.types.AUTO_SCRAM
local astatus = self.ascram_status
if self.induction[1] ~= nil then
local db = self.induction[1].get_db() ---@type imatrix_session_db
-- clear matrix disconnected
if astatus.matrix_dc then
astatus.matrix_dc = false
log.info("FAC: induction matrix reconnected, clearing ASCRAM condition")
end
-- check matrix fill too high
local was_fill = astatus.matrix_fill
astatus.matrix_fill = (db.tanks.energy_fill >= ALARM_LIMS.CHARGE_HIGH) or (astatus.matrix_fill and db.tanks.energy_fill > ALARM_LIMS.CHARGE_RE_ENABLE)
if was_fill and not astatus.matrix_fill then
log.info(util.c("FAC: charge state of induction matrix entered acceptable range <= ", ALARM_LIMS.CHARGE_RE_ENABLE * 100, "%"))
end
-- check for critical unit alarms
astatus.crit_alarm = false
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
if u.has_alarm_min_prio(PRIO.CRITICAL) then
astatus.crit_alarm = true
break
end
end
-- check for facility radiation
if #self.envd > 0 then
local max_rad = 0
for i = 1, #self.envd do
local envd = self.envd[i] ---@type unit_session
local e_db = envd.get_db() ---@type envd_session_db
if e_db.radiation_raw > max_rad then max_rad = e_db.radiation_raw end
end
astatus.radiation = max_rad >= ALARM_LIMS.FAC_HIGH_RAD
else
-- don't clear, if it is true then we lost it with high radiation, so just keep alarming
-- operator can restart the system or hit the stop/reset button
end
-- system not ready, will need to restart GEN_RATE mode
-- clears when we enter the fault waiting state
astatus.gen_fault = self.mode == PROCESS.GEN_RATE and not self.units_ready
else
astatus.matrix_dc = true
end
if (self.mode ~= PROCESS.INACTIVE) and (self.mode ~= PROCESS.SYSTEM_ALARM_IDLE) then
local scram = astatus.matrix_dc or astatus.matrix_fill or astatus.crit_alarm or astatus.gen_fault
if scram and not self.ascram then
-- SCRAM all units
for i = 1, #self.prio_defs do
for _, u in pairs(self.prio_defs[i]) do
u.auto_scram()
end
end
if astatus.crit_alarm then
-- highest priority alarm
next_mode = PROCESS.SYSTEM_ALARM_IDLE
self.ascram_reason = AUTO_SCRAM.CRIT_ALARM
self.status_text = { "AUTOMATIC SCRAM", "critical unit alarm tripped" }
log.info("FAC: automatic SCRAM due to critical unit alarm")
log.warning("FAC: emergency exit of process control due to critical unit alarm")
elseif astatus.radiation then
next_mode = PROCESS.SYSTEM_ALARM_IDLE
self.ascram_reason = AUTO_SCRAM.RADIATION
self.status_text = { "AUTOMATIC SCRAM", "facility radiation high" }
log.info("FAC: automatic SCRAM due to high facility radiation")
elseif astatus.matrix_dc then
next_mode = PROCESS.MATRIX_FAULT_IDLE
self.ascram_reason = AUTO_SCRAM.MATRIX_DC
self.status_text = { "AUTOMATIC SCRAM", "induction matrix disconnected" }
if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then self.return_mode = self.mode end
log.info("FAC: automatic SCRAM due to induction matrix disconnection")
elseif astatus.matrix_fill then
next_mode = PROCESS.MATRIX_FAULT_IDLE
self.ascram_reason = AUTO_SCRAM.MATRIX_FILL
self.status_text = { "AUTOMATIC SCRAM", "induction matrix fill high" }
if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then self.return_mode = self.mode end
log.info("FAC: automatic SCRAM due to induction matrix high charge")
elseif astatus.gen_fault then
-- lowest priority alarm
next_mode = PROCESS.GEN_RATE_FAULT_IDLE
self.ascram_reason = AUTO_SCRAM.GEN_FAULT
self.status_text = { "GENERATION MODE IDLE", "paused: system not ready" }
log.info("FAC: automatic SCRAM due to unit problem while in GEN_RATE mode, will resume once all units are ready")
end
end
self.ascram = scram
if not self.ascram then
self.ascram_reason = AUTO_SCRAM.NONE
-- reset PLC RPS trips if we should
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
u.auto_cond_rps_reset()
end
end
end
end
-- update last mode and set next mode
function update.post_auto()
self.last_mode = self.mode
self.mode = next_mode
end
-- update alarm audio control
function update.alarm_audio()
local allow_test = self.allow_testing and self.test_tone_set
local alarms = { false, false, false, false, false, false, false, false, false, false, false, false }
-- reset tone states before re-evaluting
for i = 1, #self.tone_states do self.tone_states[i] = false end
if allow_test then
alarms = self.test_alarm_states
else
-- check all alarms for all units
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
for id, alarm in pairs(u.get_alarms()) do
alarms[id] = alarms[id] or (alarm == ALARM_STATE.TRIPPED)
end
end
if not self.test_tone_reset then
-- clear testing alarms if we aren't using them
for i = 1, #self.test_alarm_states do self.test_alarm_states[i] = false end
end
end
-- Evaluate Alarms --
-- containment breach is worst case CRITICAL alarm, this takes priority
if alarms[ALARM.ContainmentBreach] then
self.tone_states[TONE.T_1800Hz_Int_4Hz] = true
else
-- critical damage is highest priority CRITICAL level alarm
if alarms[ALARM.CriticalDamage] then
self.tone_states[TONE.T_660Hz_Int_125ms] = true
else
-- EMERGENCY level alarms + URGENT over temp
if alarms[ALARM.ReactorDamage] or alarms[ALARM.ReactorOverTemp] or alarms[ALARM.ReactorWasteLeak] then
self.tone_states[TONE.T_544Hz_440Hz_Alt] = true
-- URGENT level turbine trip
elseif alarms[ALARM.TurbineTrip] then
self.tone_states[TONE.T_745Hz_Int_1Hz] = true
-- URGENT level reactor lost
elseif alarms[ALARM.ReactorLost] then
self.tone_states[TONE.T_340Hz_Int_2Hz] = true
-- TIMELY level alarms
elseif alarms[ALARM.ReactorHighTemp] or alarms[ALARM.ReactorHighWaste] or alarms[ALARM.RCSTransient] then
self.tone_states[TONE.T_800Hz_Int] = true
end
end
-- check RPS transient URGENT level alarm
if alarms[ALARM.RPSTransient] then
self.tone_states[TONE.T_1000Hz_Int] = true
-- disable really painful audio combination
self.tone_states[TONE.T_340Hz_Int_2Hz] = false
end
end
-- radiation is a big concern, always play this CRITICAL level alarm if active
if alarms[ALARM.ContainmentRadiation] then
self.tone_states[TONE.T_800Hz_1000Hz_Alt] = true
-- we are going to disable the RPS trip alarm audio due to conflict, and if it was enabled
-- then we can re-enable the reactor lost alarm audio since it doesn't painfully combine with this one
if self.tone_states[TONE.T_1000Hz_Int] and alarms[ALARM.ReactorLost] then self.tone_states[TONE.T_340Hz_Int_2Hz] = true end
-- it sounds *really* bad if this is in conjunction with these other tones, so disable them
self.tone_states[TONE.T_745Hz_Int_1Hz] = false
self.tone_states[TONE.T_800Hz_Int] = false
self.tone_states[TONE.T_1000Hz_Int] = false
end
-- add to tone states if testing is active
if allow_test then
for i = 1, #self.tone_states do
self.tone_states[i] = self.tone_states[i] or self.test_tone_states[i]
end
self.test_tone_reset = false
else
if not self.test_tone_reset then
-- clear testing tones if we aren't using them
for i = 1, #self.test_tone_states do self.test_tone_states[i] = false end
end
-- flag that tones were reset
self.test_tone_set = false
self.test_tone_reset = true
end
end
-- update facility redstone
---@param ack_all function acknowledge all alarms
function update.redstone(ack_all)
if #self.redstone > 0 then
-- handle facility SCRAM
if self.io_ctl.digital_read(IO.F_SCRAM) then
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
u.cond_scram()
end
end
-- handle facility ack
if self.io_ctl.digital_read(IO.F_ACK) then ack_all() end
-- update facility alarm outputs
local has_prio_alarm, has_any_alarm = false, false
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
if u.has_alarm_min_prio(PRIO.EMERGENCY) then
has_prio_alarm, has_any_alarm = true, true
break
elseif u.has_alarm_min_prio(PRIO.TIMELY) then
has_any_alarm = true
end
end
self.io_ctl.digital_write(IO.F_ALARM, has_prio_alarm)
self.io_ctl.digital_write(IO.F_ALARM_ANY, has_any_alarm)
-- update induction matrix related outputs
if self.induction[1] ~= nil then
local db = self.induction[1].get_db() ---@type imatrix_session_db
self.io_ctl.digital_write(IO.F_MATRIX_LOW, db.tanks.energy_fill < const.RS_THRESHOLDS.IMATRIX_CHARGE_LOW)
self.io_ctl.digital_write(IO.F_MATRIX_HIGH, db.tanks.energy_fill > const.RS_THRESHOLDS.IMATRIX_CHARGE_HIGH)
self.io_ctl.analog_write(IO.F_MATRIX_CHG, db.tanks.energy_fill, 0, 1)
end
end
end
-- update unit tasks
---@param cooling_conf sv_cooling_conf cooling configuration
function update.unit_mgmt(cooling_conf)
local insufficent_po_rate = false
local need_emcool = false
for i = 1, #self.units do
local u = self.units[i] ---@type reactor_unit
-- update auto waste processing
if u.get_control_inf().waste_mode == WASTE_MODE.AUTO then
if (u.get_sna_rate() * 10.0) < u.get_burn_rate() then
insufficent_po_rate = true
end
end
-- check if unit activated emergency coolant & uses facility tanks
if (cooling_conf.fac_tank_mode > 0) and u.is_emer_cool_tripped() and (cooling_conf.fac_tank_defs[i] == 2) then
need_emcool = true
end
end
-- update waste product
self.current_waste_product = self.waste_product
if (not self.sps_low_power) and (self.waste_product == WASTE.ANTI_MATTER) and (self.induction[1] ~= nil) then
local db = self.induction[1].get_db() ---@type imatrix_session_db
if db.tanks.energy_fill >= 0.15 then
self.disabled_sps = false
elseif self.disabled_sps or ((db.tanks.last_update > 0) and (db.tanks.energy_fill < 0.1)) then
self.disabled_sps = true
self.current_waste_product = WASTE.POLONIUM
end
else
self.disabled_sps = false
end
if self.pu_fallback and insufficent_po_rate then
self.current_waste_product = WASTE.PLUTONIUM
end
-- make sure dynamic tanks are allowing outflow if required
-- set all, rather than trying to determine which is for which (simpler & safer)
-- there should be no need for any to be in fill only mode
if need_emcool then
for i = 1, #self.tanks do
local session = self.tanks[i] ---@type unit_session
local tank = session.get_db() ---@type dynamicv_session_db
if tank.state.container_mode == CONTAINER_MODE.FILL then
session.get_cmd_queue().push_data(DTV_RTU_S_DATA.SET_CONT_MODE, CONTAINER_MODE.BOTH)
end
end
end
end
--#endregion
---@param _self _facility_self
return function (_self)
self = _self
return update
end