-- -- Redstone I/O -- local util = require("scada-common.util") ---@class rsio local rsio = {} --#region RS I/O Constants ---@enum IO_LVL I/O logic level local IO_LVL = { DISCONNECT = -1, -- use for RTU session to indicate this RTU is not connected to this port LOW = 0, HIGH = 1, FLOATING = 2 -- use for RTU session to indicate this RTU is connected but not yet read } ---@enum IO_DIR I/O direction local IO_DIR = { IN = 0, OUT = 1 } ---@enum IO_MODE I/O mode (digital/analog input/output) local IO_MODE = { DIGITAL_IN = 0, DIGITAL_OUT = 1, ANALOG_IN = 2, ANALOG_OUT = 3 } ---@enum IO_PORT redstone I/O logic port local IO_PORT = { -- digital inputs -- -- facility F_SCRAM = 1, -- active low, facility-wide scram F_ACK = 2, -- active high, facility alarm acknowledge -- reactor R_SCRAM = 3, -- active low, reactor scram R_RESET = 4, -- active high, reactor RPS reset R_ENABLE = 5, -- active high, reactor enable -- unit U_ACK = 6, -- active high, unit alarm acknowledge -- digital outputs -- -- facility F_ALARM = 7, -- active high, facility-wide alarm (any high priority unit alarm) F_ALARM_ANY = 8, -- active high, any alarm regardless of priority F_MATRIX_LOW = 27, -- active high, induction matrix charge less than F_MATRIX_HIGH = 28, -- active high, induction matrix charge high -- waste WASTE_PU = 9, -- active low, waste -> plutonium -> pellets route WASTE_PO = 10, -- active low, waste -> polonium route WASTE_POPL = 11, -- active low, polonium -> pellets route WASTE_AM = 12, -- active low, polonium -> anti-matter route -- reactor R_ACTIVE = 13, -- active high, reactor is active R_AUTO_CTRL = 14, -- active high, reactor burn rate is automatic R_SCRAMMED = 15, -- active high, reactor is scrammed R_AUTO_SCRAM = 16, -- active high, reactor was automatically scrammed R_HIGH_DMG = 17, -- active high, reactor damage is high R_HIGH_TEMP = 18, -- active high, reactor is at a high temperature R_LOW_COOLANT = 19, -- active high, reactor has very low coolant R_EXCESS_HC = 20, -- active high, reactor has excess heated coolant R_EXCESS_WS = 21, -- active high, reactor has excess waste R_INSUFF_FUEL = 22, -- active high, reactor has insufficent fuel R_PLC_FAULT = 23, -- active high, reactor PLC reports a device access fault R_PLC_TIMEOUT = 24, -- active high, reactor PLC has not been heard from -- unit outputs U_ALARM = 25, -- active high, unit alarm U_EMER_COOL = 26, -- active low, emergency coolant control -- analog outputs -- -- facility F_MATRIX_CHG = 29 -- analog charge level of the induction matrix } rsio.IO_LVL = IO_LVL rsio.IO_DIR = IO_DIR rsio.IO_MODE = IO_MODE rsio.IO = IO_PORT rsio.NUM_PORTS = 29 rsio.NUM_DIG_PORTS = 28 rsio.NUM_ANA_PORTS = 1 -- self checks assert(rsio.NUM_PORTS == (rsio.NUM_DIG_PORTS + rsio.NUM_ANA_PORTS), "port counts inconsistent") local dup_chk = {} for _, v in pairs(IO_PORT) do assert(dup_chk[v] ~= true, "duplicate in port list") dup_chk[v] = true end assert(#dup_chk == rsio.NUM_PORTS, "port list malformed") --#endregion --#region Utility Functions and Attribute Tables local IO = IO_PORT -- list of all port names local PORT_NAMES = {} for k, v in pairs(IO) do PORT_NAMES[v] = k end -- list of all port I/O modes local MODES = { [IO.F_SCRAM] = IO_MODE.DIGITAL_IN, [IO.F_ACK] = IO_MODE.DIGITAL_IN, [IO.R_SCRAM] = IO_MODE.DIGITAL_IN, [IO.R_RESET] = IO_MODE.DIGITAL_IN, [IO.R_ENABLE] = IO_MODE.DIGITAL_IN, [IO.U_ACK] = IO_MODE.DIGITAL_IN, [IO.F_ALARM] = IO_MODE.DIGITAL_OUT, [IO.F_ALARM_ANY] = IO_MODE.DIGITAL_OUT, [IO.F_MATRIX_LOW] = IO_MODE.DIGITAL_OUT, [IO.F_MATRIX_HIGH] = IO_MODE.DIGITAL_OUT, [IO.WASTE_PU] = IO_MODE.DIGITAL_OUT, [IO.WASTE_PO] = IO_MODE.DIGITAL_OUT, [IO.WASTE_POPL] = IO_MODE.DIGITAL_OUT, [IO.WASTE_AM] = IO_MODE.DIGITAL_OUT, [IO.R_ACTIVE] = IO_MODE.DIGITAL_OUT, [IO.R_AUTO_CTRL] = IO_MODE.DIGITAL_OUT, [IO.R_SCRAMMED] = IO_MODE.DIGITAL_OUT, [IO.R_AUTO_SCRAM] = IO_MODE.DIGITAL_OUT, [IO.R_HIGH_DMG] = IO_MODE.DIGITAL_OUT, [IO.R_HIGH_TEMP] = IO_MODE.DIGITAL_OUT, [IO.R_LOW_COOLANT] = IO_MODE.DIGITAL_OUT, [IO.R_EXCESS_HC] = IO_MODE.DIGITAL_OUT, [IO.R_EXCESS_WS] = IO_MODE.DIGITAL_OUT, [IO.R_INSUFF_FUEL] = IO_MODE.DIGITAL_OUT, [IO.R_PLC_FAULT] = IO_MODE.DIGITAL_OUT, [IO.R_PLC_TIMEOUT] = IO_MODE.DIGITAL_OUT, [IO.U_ALARM] = IO_MODE.DIGITAL_OUT, [IO.U_EMER_COOL] = IO_MODE.DIGITAL_OUT, [IO.F_MATRIX_CHG] = IO_MODE.ANALOG_OUT } assert(rsio.NUM_PORTS == #PORT_NAMES, "port names length incorrect") assert(rsio.NUM_PORTS == #MODES, "modes length incorrect") -- port to string ---@nodiscard ---@param port IO_PORT function rsio.to_string(port) if util.is_int(port) and port > 0 and port <= #PORT_NAMES then return PORT_NAMES[port] else return "UNKNOWN" end end local _B_AND = bit.band local function _I_ACTIVE_HIGH(level) return level == IO_LVL.HIGH end local function _I_ACTIVE_LOW(level) return level == IO_LVL.LOW end local function _O_ACTIVE_HIGH(active) if active then return IO_LVL.HIGH else return IO_LVL.LOW end end local function _O_ACTIVE_LOW(active) if active then return IO_LVL.LOW else return IO_LVL.HIGH end end -- I/O mappings to I/O function and I/O mode local RS_DIO_MAP = { [IO.F_SCRAM] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.IN }, [IO.F_ACK] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.IN }, [IO.R_SCRAM] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.IN }, [IO.R_RESET] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.IN }, [IO.R_ENABLE] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.IN }, [IO.U_ACK] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.IN }, [IO.F_ALARM] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.F_ALARM_ANY] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.F_MATRIX_LOW] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.F_MATRIX_HIGH] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.WASTE_PU] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT }, [IO.WASTE_PO] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT }, [IO.WASTE_POPL] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT }, [IO.WASTE_AM] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT }, [IO.R_ACTIVE] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_AUTO_CTRL] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_SCRAMMED] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_AUTO_SCRAM] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_HIGH_DMG] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_HIGH_TEMP] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_LOW_COOLANT] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_EXCESS_HC] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_EXCESS_WS] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_INSUFF_FUEL] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_PLC_FAULT] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.R_PLC_TIMEOUT] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.U_ALARM] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT }, [IO.U_EMER_COOL] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT } } assert(rsio.NUM_DIG_PORTS == #RS_DIO_MAP, "RS_DIO_MAP length incorrect") -- get the I/O direction of a port ---@nodiscard ---@param port IO_PORT ---@return IO_DIR function rsio.get_io_dir(port) if rsio.is_valid_port(port) then return util.trinary(MODES[port] == IO_MODE.DIGITAL_OUT or MODES[port] == IO_MODE.ANALOG_OUT, IO_DIR.OUT, IO_DIR.IN) else return IO_DIR.IN end end -- get the mode of a port ---@nodiscard ---@param port IO_PORT ---@return IO_MODE function rsio.get_io_mode(port) if rsio.is_valid_port(port) then return MODES[port] else return IO_MODE.ANALOG_IN end end --#endregion --#region Generic Checks local RS_SIDES = rs.getSides() -- check if a port is valid ---@nodiscard ---@param port IO_PORT ---@return boolean valid function rsio.is_valid_port(port) return util.is_int(port) and port > 0 and port <= rsio.NUM_PORTS end -- check if a side is valid ---@nodiscard ---@param side string ---@return boolean valid function rsio.is_valid_side(side) if side ~= nil then for i = 0, #RS_SIDES do if RS_SIDES[i] == side then return true end end end return false end -- check if a color is a valid single color ---@nodiscard ---@param color any ---@return boolean valid function rsio.is_color(color) return util.is_int(color) and (color > 0) and (_B_AND(color, (color - 1)) == 0) end -- color to string ---@nodiscard ---@param color color ---@return string function rsio.color_name(color) local color_name_map = { [colors.red] = "red", [colors.orange] = "orange", [colors.yellow] = "yellow", [colors.lime] = "lime", [colors.green] = "green", [colors.cyan] = "cyan", [colors.lightBlue] = "lightBlue", [colors.blue] = "blue", [colors.purple] = "purple", [colors.magenta] = "magenta", [colors.pink] = "pink", [colors.white] = "white", [colors.lightGray] = "lightGray", [colors.gray] = "gray", [colors.black] = "black", [colors.brown] = "brown" } if rsio.is_color(color) then return color_name_map[color] else return "unknown" end end --#endregion --#region Digital I/O -- check if a port is digital ---@nodiscard ---@param port IO_PORT function rsio.is_digital(port) return rsio.is_valid_port(port) and (MODES[port] == IO_MODE.DIGITAL_IN or MODES[port] == IO_MODE.DIGITAL_OUT) end -- get digital I/O level reading from a redstone boolean input value ---@nodiscard ---@param rs_value boolean raw value from redstone ---@return IO_LVL function rsio.digital_read(rs_value) if rs_value then return IO_LVL.HIGH else return IO_LVL.LOW end end -- get redstone boolean output value corresponding to a digital I/O level ---@nodiscard ---@param level IO_LVL logic level ---@return boolean function rsio.digital_write(level) return level == IO_LVL.HIGH end -- returns the level corresponding to active ---@nodiscard ---@param port IO_PORT port (to determine active high/low) ---@param active boolean state to convert to logic level ---@return IO_LVL|false function rsio.digital_write_active(port, active) if not rsio.is_digital(port) then return false else return RS_DIO_MAP[port]._out(active) end end -- returns true if the level corresponds to active ---@nodiscard ---@param port IO_PORT port (to determine active low/high) ---@param level IO_LVL logic level ---@return boolean|nil state true for active, false for inactive, or nil if invalid port or level provided function rsio.digital_is_active(port, level) if (not rsio.is_digital(port)) or level == IO_LVL.FLOATING or level == IO_LVL.DISCONNECT then return nil else return RS_DIO_MAP[port]._in(level) end end --#endregion --#region Analog I/O -- check if a port is analog ---@nodiscard ---@param port IO_PORT function rsio.is_analog(port) return rsio.is_valid_port(port) and (MODES[port] == IO_MODE.ANALOG_IN or MODES[port] == IO_MODE.ANALOG_OUT) end -- read an analog value scaled from min to max ---@nodiscard ---@param rs_value number redstone reading (0 to 15) ---@param min number minimum of range ---@param max number maximum of range ---@return number value scaled reading (min to max) function rsio.analog_read(rs_value, min, max) local value = rs_value / 15 return (value * (max - min)) + min end -- write an analog value from the provided scale range ---@nodiscard ---@param value number value to write (from min to max range) ---@param min number minimum of range ---@param max number maximum of range ---@return integer rs_value scaled redstone reading (0 to 15) function rsio.analog_write(value, min, max) local scaled_value = (value - min) / (max - min) return math.floor(scaled_value * 15) end --#endregion return rsio