local log = require("scada-common.log") local rsio = require("scada-common.rsio") local types = require("scada-common.types") local util = require("scada-common.util") local rsctl = require("supervisor.session.rsctl") local unit = require("supervisor.session.unit") local PROCESS = types.PROCESS -- 7.14 kJ per blade for 1 mB of fissile fuel
-- 2856 FE per blade per 1 mB, 285.6 FE per blade per 0.1 mB (minimum) local POWER_PER_BLADE = util.joules_to_fe(7140) local FLOW_STABILITY_DELAY_S = unit.FLOW_STABILITY_DELAY_MS / 1000 local HIGH_CHARGE = 1.0 local RE_ENABLE_CHARGE = 0.95 local AUTO_SCRAM = { NONE = 0, MATRIX_DC = 1, MATRIX_FILL = 2, CRIT_ALARM = 3 } local charge_Kp = 1.0 local charge_Ki = 0.0 local charge_Kd = 0.0 local rate_Kp = 0.75 local rate_Ki = 0.01 local rate_Kd = -0.10 ---@class facility_management local facility = {} -- create a new facility management object ---@param num_reactors integer number of reactor units ---@param cooling_conf table cooling configurations of reactor units function facility.new(num_reactors, cooling_conf) local self = { units = {}, induction = {}, redstone = {}, status_text = { "START UP", "initializing..." }, all_sys_ok = false, -- process control units_ready = false, mode = PROCESS.INACTIVE, last_mode = PROCESS.INACTIVE, return_mode = PROCESS.INACTIVE, mode_set = PROCESS.SIMPLE, max_burn_combined = 0.0, -- maximum burn rate to clamp at burn_target = 0.1, -- burn rate target for aggregate burn mode charge_setpoint = 0, -- FE charge target setpoint gen_rate_setpoint = 0, -- FE/t charge rate target setpoint group_map = { 0, 0, 0, 0 }, -- units -> group IDs prio_defs = { {}, {}, {}, {} }, -- priority definitions (each level is a table of units) at_max_burn = false, ascram = false, ascram_reason = AUTO_SCRAM.NONE, -- closed loop control charge_conversion = 1.0, time_start = 0.0, initial_ramp = true, waiting_on_ramp = false, waiting_on_stable = false, accumulator = 0.0, saturated = false, last_update = 0, last_error = 0.0, last_time = 0.0, -- statistics im_stat_init = false, avg_charge = util.mov_avg(10, 0.0), avg_inflow = util.mov_avg(10, 0.0), avg_outflow = util.mov_avg(10, 0.0) } -- create units for i = 1, num_reactors do table.insert(self.units, unit.new(i, cooling_conf[i].BOILERS, cooling_conf[i].TURBINES)) end -- init redstone RTU I/O controller local rs_rtu_io_ctl = rsctl.new(self.redstone) -- unlink disconnected units ---@param sessions table local function _unlink_disconnected_units(sessions) util.filter_table(sessions, function (u) return u.is_connected() end) end -- check if all auto-controlled units completed ramping local function _all_units_ramped() local all_ramped = true for i = 1, #self.prio_defs do local units = self.prio_defs[i] for u = 1, #units do all_ramped = all_ramped and units[u].a_ramp_complete() end end return all_ramped end -- split a burn rate among the reactors ---@param burn_rate number burn rate assignment ---@param ramp boolean true to ramp, false to set right away ---@return integer unallocated local function _allocate_burn_rate(burn_rate, ramp) local unallocated = math.floor(burn_rate * 100) -- go through alll priority groups for i = 1, #self.prio_defs do local units = self.prio_defs[i] if #units > 0 then local split = math.floor(unallocated / #units) local splits = {} for u = 1, #units do splits[u] = split end splits[#units] = splits[#units] + (unallocated % #units) -- go through all reactor units in this group for id = 1, #units do local u = units[id] ---@type reactor_unit local ctl = u.get_control_inf() local lim_br100 = u.a_get_effective_limit() local last = ctl.br100 if splits[id] <= lim_br100 then ctl.br100 = splits[id] else ctl.br100 = lim_br100 if id < #units then local remaining = #units - id split = math.floor(unallocated / remaining) for x = (id + 1), #units do splits[x] = split end splits[#units] = splits[#units] + (unallocated % remaining) end end unallocated = math.max(0, unallocated - ctl.br100) if last ~= ctl.br100 then log.debug("unit " .. id .. ": set to " .. ctl.br100 .. " (was " .. last .. ")") u.a_commit_br100(ramp) end end end end return unallocated end -- PUBLIC FUNCTIONS -- ---@class facility local public = {} -- ADD/LINK DEVICES -- -- link a redstone RTU session ---@param rs_unit unit_session function public.add_redstone(rs_unit) table.insert(self.redstone, rs_unit) end -- link an imatrix RTU session ---@param imatrix unit_session function public.add_imatrix(imatrix) table.insert(self.induction, imatrix) end -- purge devices associated with the given RTU session ID ---@param session integer RTU session ID function public.purge_rtu_devices(session) util.filter_table(self.redstone, function (s) return s.get_session_id() ~= session end) util.filter_table(self.induction, function (s) return s.get_session_id() ~= session end) end -- UPDATE -- -- update (iterate) the facility management function public.update() -- unlink RTU unit sessions if they are closed _unlink_disconnected_units(self.induction) _unlink_disconnected_units(self.redstone) -- calculate moving averages for induction matrix local charge_update = 0 local rate_update = 0 if self.induction[1] ~= nil then local matrix = self.induction[1] ---@type unit_session local db = matrix.get_db() ---@type imatrix_session_db charge_update = db.tanks.last_update rate_update = db.state.last_update if (charge_update > 0) and (rate_update > 0) then if self.im_stat_init then self.avg_charge.record(util.joules_to_fe(db.tanks.energy), charge_update) self.avg_inflow.record(util.joules_to_fe(db.state.last_input), rate_update) self.avg_outflow.record(util.joules_to_fe(db.state.last_output), rate_update) else self.im_stat_init = true self.avg_charge.reset(util.joules_to_fe(db.tanks.energy)) self.avg_inflow.reset(util.joules_to_fe(db.state.last_input)) self.avg_outflow.reset(util.joules_to_fe(db.state.last_output)) end end else self.im_stat_init = false end self.all_sys_ok = true for i = 1, #self.units do self.all_sys_ok = self.all_sys_ok and not self.units[i].get_control_inf().degraded end ------------------------- -- Run Process Control -- ------------------------- local avg_charge = self.avg_charge.compute() local avg_inflow = self.avg_inflow.compute() local now = util.time_s() local state_changed = self.mode ~= self.last_mode local next_mode = self.mode -- once auto control is started, sort the priority sublists by limits if state_changed then self.saturated = false log.debug("FAC: state changed from " .. self.last_mode .. " to " .. self.mode) if self.last_mode == PROCESS.INACTIVE then ---@todo change this to be a reset button if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then self.ascram = false end local blade_count = 0 self.max_burn_combined = 0.0 for i = 1, #self.prio_defs do table.sort(self.prio_defs[i], ---@param a reactor_unit ---@param b reactor_unit function (a, b) return a.get_control_inf().lim_br100 < b.get_control_inf().lim_br100 end ) for _, u in pairs(self.prio_defs[i]) do blade_count = blade_count + u.get_control_inf().blade_count u.a_engage() self.max_burn_combined = self.max_burn_combined + (u.get_control_inf().lim_br100 / 100.0) end end self.charge_conversion = blade_count * POWER_PER_BLADE log.debug(util.c("FAC: starting auto control: chg_conv = ", self.charge_conversion, ", blade_count = ", blade_count, ", max_burn = ", self.max_burn_combined)) elseif self.mode == PROCESS.INACTIVE then for i = 1, #self.prio_defs do -- SCRAM reactors and disengage auto control -- use manual SCRAM since inactive was requested, and automatic SCRAM trips an alarm for _, u in pairs(self.prio_defs[i]) do u.scram() u.a_disengage() end end self.status_text = { "IDLE", "control disengaged" } log.debug("FAC: disengaging auto control (now inactive)") end self.initial_ramp = true self.waiting_on_ramp = false self.waiting_on_stable = false else self.initial_ramp = false end -- update unit ready state self.units_ready = true for i = 1, #self.prio_defs do for _, u in pairs(self.prio_defs[i]) do self.units_ready = self.units_ready and u.get_control_inf().ready end end -- perform mode-specific operations if self.mode == PROCESS.INACTIVE then if self.units_ready then self.status_text = { "IDLE", "control disengaged" } else self.status_text = { "NOT READY", "assigned units not ready" } end elseif self.mode == PROCESS.SIMPLE then -- run units at their limits if state_changed then self.time_start = now self.saturated = true self.status_text = { "MONITORED MODE", "running reactors at limit" } log.debug(util.c("FAC: SIMPLE mode first call completed")) end _allocate_burn_rate(self.max_burn_combined, true) elseif self.mode == PROCESS.BURN_RATE then -- a total aggregate burn rate if state_changed then -- nothing special to do self.status_text = { "BURN RATE MODE", "starting up" } log.debug(util.c("FAC: BURN_RATE mode first call completed")) elseif self.waiting_on_ramp and _all_units_ramped() then self.waiting_on_ramp = false self.time_start = now self.status_text = { "BURN RATE MODE", "running" } log.debug(util.c("FAC: BURN_RATE mode initial ramp completed")) end if not self.waiting_on_ramp then local unallocated = _allocate_burn_rate(self.burn_target, true) self.saturated = self.burn_target == self.max_burn_combined or unallocated > 0 if self.initial_ramp then self.status_text = { "BURN RATE MODE", "ramping reactors" } self.waiting_on_ramp = true log.debug(util.c("FAC: BURN_RATE mode allocated initial ramp")) end end elseif self.mode == PROCESS.CHARGE then -- target a level of charge -- convert to kFE to make constants not microscopic local error = (self.charge_setpoint - avg_charge) / 1000000 if state_changed then self.last_time = now log.debug(util.c("FAC: CHARGE mode first call completed")) elseif self.waiting_on_ramp and _all_units_ramped() then self.waiting_on_ramp = false self.time_start = now self.accumulator = 0 log.debug(util.c("FAC: CHARGE mode initial ramp completed")) end if not self.waiting_on_ramp then if not self.saturated then self.accumulator = self.accumulator + (error * (now - self.last_time)) end local runtime = now - self.time_start local integral = self.accumulator -- local derivative = (error - self.last_error) / (now - self.last_time) local P = (charge_Kp * error) local I = (charge_Ki * integral) local D = 0 -- (charge_Kd * derivative) local setpoint = P + I + D -- clamp at range -> setpoint clamped (sp_c) local sp_c = math.max(0, math.min(setpoint, self.max_burn_combined)) self.saturated = setpoint ~= sp_c log.debug(util.sprintf("PROC_CHRG[%f] { CHRG[%f] ERR[%f] INT[%f] => SP[%f] SP_C[%f] <= P[%f] I[%f] D[%d] }", runtime, avg_charge, error, integral, setpoint, sp_c, P, I, D)) _allocate_burn_rate(sp_c, self.initial_ramp) self.last_time = now if self.initial_ramp then self.waiting_on_ramp = true end end elseif self.mode == PROCESS.GEN_RATE then -- target a rate of generation -- convert to MFE to make constants not microscopic local error = (self.gen_rate_setpoint - avg_inflow) / 1000000 local output = 0.0 if state_changed then -- estimate an initial setpoint output = (error * 1000000) / self.charge_conversion log.debug(util.c("FAC: initial burn rate for gen rate is " .. output)) _allocate_burn_rate(output, true) self.waiting_on_ramp = true self.status_text = { "GENERATION MODE", "starting up" } elseif self.waiting_on_ramp then if _all_units_ramped() then self.waiting_on_ramp = false self.waiting_on_stable = true self.time_start = now self.status_text = { "GENERATION MODE", "holding ramped rate" } log.debug("FAC: GEN_RATE mode initial ramp completed, holding for stablization time") end elseif self.waiting_on_stable then if (now - self.time_start) > FLOW_STABILITY_DELAY_S then self.waiting_on_stable = false self.time_start = now self.last_time = now self.last_error = 0 self.accumulator = 0 self.status_text = { "GENERATION MODE", "running control loop" } log.debug("FAC: GEN_RATE mode initial hold completed") end elseif self.last_update ~= rate_update then if not self.saturated then self.accumulator = self.accumulator + (error * (now - self.last_time)) end local runtime = util.time_s() - self.time_start local integral = self.accumulator local derivative = (error - self.last_error) / (now - self.last_time) local P = (rate_Kp * error) local I = (rate_Ki * integral) local D = (rate_Kd * derivative) -- velocity (rate) (derivative of charge level => rate) feed forward local FF = self.gen_rate_setpoint / self.charge_conversion output = P + I + D + FF -- clamp at range -> output clamped (sp_c) local out_c = math.max(0, math.min(output, self.max_burn_combined)) self.saturated = output ~= out_c log.debug(util.sprintf("GEN_RATE[%f] { RATE[%f] ERR[%f] INT[%f] => OUT[%f] OUT_C[%f] <= P[%f] I[%f] D[%f] }", runtime, avg_inflow, error, integral, output, out_c, P, I, D)) _allocate_burn_rate(out_c, false) self.last_time = now self.last_error = error end self.last_update = rate_update elseif self.mode == PROCESS.MATRIX_FAULT_IDLE then -- exceeded charge, wait until condition clears if self.ascram_reason == AUTO_SCRAM.NONE then next_mode = self.return_mode log.info("FAC: exiting matrix fault idle state due to fault resolution") elseif self.ascram_reason == AUTO_SCRAM.CRIT_ALARM then next_mode = PROCESS.INACTIVE log.info("FAC: exiting matrix fault idle state due to critical unit alarm") end elseif self.mode == PROCESS.UNIT_ALARM_IDLE then -- do nothing, wait for user to confirm (stop and reset) elseif self.mode ~= PROCESS.INACTIVE then log.error(util.c("FAC: unsupported process mode ", self.mode, ", switching to inactive")) next_mode = PROCESS.INACTIVE end ------------------------------ -- Evaluate Automatic SCRAM -- ------------------------------ if (self.mode ~= PROCESS.INACTIVE) and (self.mode ~= PROCESS.UNIT_ALARM_IDLE) then local scram = false if self.induction[1] ~= nil then local matrix = self.induction[1] ---@type unit_session local db = matrix.get_db() ---@type imatrix_session_db if self.ascram_reason == AUTO_SCRAM.MATRIX_DC then self.ascram_reason = AUTO_SCRAM.NONE log.info("FAC: cleared automatic SCRAM trip due to prior induction matrix disconnect") end if (db.tanks.energy_fill >= HIGH_CHARGE) or (self.ascram_reason == AUTO_SCRAM.MATRIX_FILL and db.tanks.energy_fill > RE_ENABLE_CHARGE) then scram = true if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then self.return_mode = self.mode next_mode = PROCESS.MATRIX_FAULT_IDLE end if self.ascram_reason == AUTO_SCRAM.NONE then self.ascram_reason = AUTO_SCRAM.MATRIX_FILL end elseif self.ascram_reason == AUTO_SCRAM.MATRIX_FILL then log.info("FAC: charge state of induction matrix entered acceptable range <= " .. (RE_ENABLE_CHARGE * 100) .. "%") self.ascram_reason = AUTO_SCRAM.NONE end for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit if u.has_critical_alarm() then scram = true if self.ascram_reason == AUTO_SCRAM.NONE then self.ascram_reason = AUTO_SCRAM.CRIT_ALARM end next_mode = PROCESS.UNIT_ALARM_IDLE log.info("FAC: emergency exit of process control due to critical unit alarm") break end end else scram = true if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then self.return_mode = self.mode next_mode = PROCESS.MATRIX_FAULT_IDLE end if self.ascram_reason == AUTO_SCRAM.NONE then self.ascram_reason = AUTO_SCRAM.MATRIX_DC end end -- SCRAM all units if (not self.ascram) and scram then for i = 1, #self.prio_defs do for _, u in pairs(self.prio_defs[i]) do u.a_scram() end end if self.ascram_reason == AUTO_SCRAM.MATRIX_DC then log.info("FAC: automatic SCRAM due to induction matrix disconnection") self.status_text = { "AUTOMATIC SCRAM", "induction matrix disconnected" } elseif self.ascram_reason == AUTO_SCRAM.MATRIX_FILL then log.info("FAC: automatic SCRAM due to induction matrix high charge") self.status_text = { "AUTOMATIC SCRAM", "induction matrix fill high" } elseif self.ascram_reason == AUTO_SCRAM.CRIT_ALARM then log.info("FAC: automatic SCRAM due to critical unit alarm") self.status_text = { "AUTOMATIC SCRAM", "critical unit alarm tripped" } else log.error(util.c("FAC: automatic SCRAM reason (", self.ascram_reason, ") not set to a known value")) end end self.ascram = scram -- clear PLC SCRAM if we should if not self.ascram then self.ascram_reason = AUTO_SCRAM.NONE for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit u.a_cond_rps_reset() end end end -- update last mode and set next mode self.last_mode = self.mode self.mode = next_mode end -- call the update function of all units in the facility function public.update_units() for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit u.update() end end -- COMMANDS -- -- SCRAM all reactor units function public.scram_all() for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit u.scram() end end -- ack all alarms on all reactor units function public.ack_all() for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit u.ack_all() end end -- stop auto control function public.auto_stop() self.mode = PROCESS.INACTIVE end -- set automatic control configuration and start the process ---@param config coord_auto_config configuration ---@return table response ready state (successfully started) and current configuration (after updating) function public.auto_start(config) local ready = false -- load up current limits local limits = {} for i = 1, num_reactors do local u = self.units[i] ---@type reactor_unit limits[i] = u.get_control_inf().lim_br100 * 100 end -- only allow changes if not running if self.mode == PROCESS.INACTIVE then if (type(config.mode) == "number") and (config.mode > PROCESS.INACTIVE) and (config.mode <= PROCESS.GEN_RATE) then self.mode_set = config.mode log.debug("SET MODE " .. self.mode_set) end if (type(config.burn_target) == "number") and config.burn_target >= 0.1 then self.burn_target = config.burn_target log.debug("SET BURN TARGET " .. self.burn_target) end if (type(config.charge_target) == "number") and config.charge_target >= 0 then self.charge_setpoint = config.charge_target log.debug("SET CHARGE TARGET " .. self.charge_setpoint) end if (type(config.gen_target) == "number") and config.gen_target >= 0 then self.gen_rate_setpoint = config.gen_target * 1000 -- convert kFE to FE log.debug("SET RATE TARGET " .. self.gen_rate_setpoint) end if (type(config.limits) == "table") and (#config.limits == num_reactors) then for i = 1, num_reactors do local limit = config.limits[i] if (type(limit) == "number") and (limit >= 0.1) then limits[i] = limit self.units[i].set_burn_limit(limit) log.debug("SET UNIT " .. i .. " LIMIT " .. limit) end end end ready = self.mode_set > 0 if (self.mode_set == PROCESS.CHARGE) and (self.charge_setpoint <= 0) then ready = false elseif (self.mode_set == PROCESS.GEN_RATE) and (self.gen_rate_setpoint <= 0) then ready = false elseif (self.mode_set == PROCESS.BURN_RATE) and (self.burn_target < 0.1) then ready = false end ready = ready and self.units_ready if ready then self.mode = self.mode_set end end return { ready, self.mode_set, self.burn_target, self.charge_setpoint, self.gen_rate_setpoint, limits } end -- SETTINGS -- -- set the automatic control group of a unit ---@param unit_id integer unit ID ---@param group integer group ID or 0 for independent function public.set_group(unit_id, group) if group >= 0 and group <= 4 and self.mode == PROCESS.INACTIVE then -- remove from old group if previously assigned local old_group = self.group_map[unit_id] if old_group ~= 0 then util.filter_table(self.prio_defs[old_group], function (u) return u.get_id() ~= unit_id end) end self.group_map[unit_id] = group -- add to group if not independent if group > 0 then table.insert(self.prio_defs[group], self.units[unit_id]) end end end -- READ STATES/PROPERTIES -- -- get build properties of all machines function public.get_build() local build = {} build.induction = {} for i = 1, #self.induction do local matrix = self.induction[i] ---@type unit_session build.induction[matrix.get_device_idx()] = { matrix.get_db().formed, matrix.get_db().build } end return build end -- get automatic process control status function public.get_control_status() return { self.all_sys_ok, self.units_ready, self.mode, self.waiting_on_ramp or self.waiting_on_stable, self.at_max_burn or self.saturated, self.ascram, self.status_text[1], self.status_text[2], self.group_map } end -- get RTU statuses function public.get_rtu_statuses() local status = {} -- power averages from induction matricies status.power = { self.avg_charge.compute(), self.avg_inflow.compute(), self.avg_outflow.compute() } -- status of induction matricies (including tanks) status.induction = {} for i = 1, #self.induction do local matrix = self.induction[i] ---@type unit_session status.induction[matrix.get_device_idx()] = { matrix.is_faulted(), matrix.get_db().formed, matrix.get_db().state, matrix.get_db().tanks } end ---@todo other RTU statuses return status end function public.get_units() return self.units end return public end return facility