local audio = require("scada-common.audio") local const = require("scada-common.constants") local log = require("scada-common.log") local rsio = require("scada-common.rsio") local types = require("scada-common.types") local util = require("scada-common.util") local unit = require("supervisor.unit") local qtypes = require("supervisor.session.rtu.qtypes") local rsctl = require("supervisor.session.rsctl") local TONE = audio.TONE local ALARM = types.ALARM local PRIO = types.ALARM_PRIORITY local ALARM_STATE = types.ALARM_STATE local CONTAINER_MODE = types.CONTAINER_MODE local PROCESS = types.PROCESS local PROCESS_NAMES = types.PROCESS_NAMES local RTU_UNIT_TYPE = types.RTU_UNIT_TYPE local WASTE_MODE = types.WASTE_MODE local WASTE = types.WASTE_PRODUCT local IO = rsio.IO local DTV_RTU_S_DATA = qtypes.DTV_RTU_S_DATA -- 7.14 kJ per blade for 1 mB of fissile fuel
-- 2856 FE per blade per 1 mB, 285.6 FE per blade per 0.1 mB (minimum) local POWER_PER_BLADE = util.joules_to_fe(7140) local FLOW_STABILITY_DELAY_S = const.FLOW_STABILITY_DELAY_MS / 1000 local ALARM_LIMS = const.ALARM_LIMITS local AUTO_SCRAM = { NONE = 0, MATRIX_DC = 1, MATRIX_FILL = 2, CRIT_ALARM = 3, RADIATION = 4, GEN_FAULT = 5 } local START_STATUS = { OK = 0, NO_UNITS = 1, BLADE_MISMATCH = 2 } local charge_Kp = 0.275 local charge_Ki = 0.0 local charge_Kd = 4.5 local rate_Kp = 2.45 local rate_Ki = 0.4825 local rate_Kd = -1.0 ---@class facility_management local facility = {} -- create a new facility management object ---@nodiscard ---@param num_reactors integer number of reactor units ---@param cooling_conf sv_cooling_conf cooling configurations of reactor units function facility.new(num_reactors, cooling_conf) local self = { units = {}, status_text = { "START UP", "initializing..." }, all_sys_ok = false, allow_testing = false, -- rtus rtu_conn_count = 0, rtu_list = {}, redstone = {}, induction = {}, sps = {}, tanks = {}, envd = {}, -- redstone I/O control io_ctl = nil, ---@type rs_controller -- process control units_ready = false, mode = PROCESS.INACTIVE, last_mode = PROCESS.INACTIVE, return_mode = PROCESS.INACTIVE, mode_set = PROCESS.MAX_BURN, start_fail = START_STATUS.OK, max_burn_combined = 0.0, -- maximum burn rate to clamp at burn_target = 0.1, -- burn rate target for aggregate burn mode charge_setpoint = 0, -- FE charge target setpoint gen_rate_setpoint = 0, -- FE/t charge rate target setpoint group_map = {}, -- units -> group IDs prio_defs = { {}, {}, {}, {} }, -- priority definitions (each level is a table of units) at_max_burn = false, ascram = false, ascram_reason = AUTO_SCRAM.NONE, ---@class ascram_status ascram_status = { matrix_dc = false, matrix_fill = false, crit_alarm = false, radiation = false, gen_fault = false }, -- closed loop control charge_conversion = 1.0, time_start = 0.0, initial_ramp = true, waiting_on_ramp = false, waiting_on_stable = false, accumulator = 0.0, saturated = false, last_update = 0, last_error = 0.0, last_time = 0.0, -- waste processing waste_product = WASTE.PLUTONIUM, current_waste_product = WASTE.PLUTONIUM, pu_fallback = false, -- alarm tones tone_states = {}, test_tone_set = false, test_tone_reset = false, test_tone_states = {}, test_alarm_states = {}, -- statistics im_stat_init = false, avg_charge = util.mov_avg(3, 0.0), avg_inflow = util.mov_avg(6, 0.0), avg_outflow = util.mov_avg(6, 0.0) } -- create units for i = 1, num_reactors do table.insert(self.units, unit.new(i, cooling_conf.r_cool[i].BOILERS, cooling_conf.r_cool[i].TURBINES)) table.insert(self.group_map, 0) end -- list for RTU session management self.rtu_list = { self.redstone, self.induction, self.sps, self.tanks, self.envd } -- init redstone RTU I/O controller self.io_ctl = rsctl.new(self.redstone) -- fill blank alarm/tone states for _ = 1, 12 do table.insert(self.test_alarm_states, false) end for _ = 1, 8 do table.insert(self.tone_states, false) table.insert(self.test_tone_states, false) end -- check if all auto-controlled units completed ramping ---@nodiscard local function _all_units_ramped() local all_ramped = true for i = 1, #self.prio_defs do local units = self.prio_defs[i] for u = 1, #units do all_ramped = all_ramped and units[u].auto_ramp_complete() end end return all_ramped end -- split a burn rate among the reactors ---@param burn_rate number burn rate assignment ---@param ramp boolean true to ramp, false to set right away ---@param abort_on_fault boolean? true to exit if one device has an effective burn rate different than its limit ---@return integer unallocated_br100, boolean? aborted local function _allocate_burn_rate(burn_rate, ramp, abort_on_fault) local unallocated = math.floor(burn_rate * 100) -- go through all priority groups for i = 1, #self.prio_defs do local units = self.prio_defs[i] if #units > 0 then local split = math.floor(unallocated / #units) local splits = {} for u = 1, #units do splits[u] = split end splits[#units] = splits[#units] + (unallocated % #units) -- go through all reactor units in this group for id = 1, #units do local u = units[id] ---@type reactor_unit local ctl = u.get_control_inf() local lim_br100 = u.auto_get_effective_limit() if abort_on_fault and (lim_br100 ~= ctl.lim_br100) then -- effective limit differs from set limit, unit is degraded return unallocated, true end local last = ctl.br100 if splits[id] <= lim_br100 then ctl.br100 = splits[id] else ctl.br100 = lim_br100 if id < #units then local remaining = #units - id split = math.floor(unallocated / remaining) for x = (id + 1), #units do splits[x] = split end splits[#units] = splits[#units] + (unallocated % remaining) end end unallocated = math.max(0, unallocated - ctl.br100) if last ~= ctl.br100 then u.auto_commit_br100(ramp) end end end end return unallocated, false end -- PUBLIC FUNCTIONS -- ---@class facility local public = {} -- ADD/LINK DEVICES -- -- link a redstone RTU session ---@param rs_unit unit_session function public.add_redstone(rs_unit) table.insert(self.redstone, rs_unit) end -- link an induction matrix RTU session ---@param imatrix unit_session ---@return boolean linked induction matrix accepted (max 1) function public.add_imatrix(imatrix) if #self.induction == 0 then table.insert(self.induction, imatrix) return true else return false end end -- link an SPS RTU session ---@param sps unit_session ---@return boolean linked SPS accepted (max 1) function public.add_sps(sps) if #self.sps == 0 then table.insert(self.sps, sps) return true else return false end end -- link a dynamic tank RTU session ---@param dynamic_tank unit_session ---@return boolean linked dynamic tank accepted (max 1) function public.add_tank(dynamic_tank) if #self.tanks == 0 then table.insert(self.tanks, dynamic_tank) return true else return false end end -- link an environment detector RTU session ---@param envd unit_session ---@return boolean linked environment detector accepted (max 1) function public.add_envd(envd) if #self.envd == 0 then table.insert(self.envd, envd) return true else return false end end -- purge devices associated with the given RTU session ID ---@param session integer RTU session ID function public.purge_rtu_devices(session) for _, v in pairs(self.rtu_list) do util.filter_table(v, function (s) return s.get_session_id() ~= session end) end end -- UPDATE -- -- supervisor sessions reporting the list of active RTU sessions ---@param rtu_sessions table session list of all connected RTUs function public.report_rtus(rtu_sessions) self.rtu_conn_count = #rtu_sessions end -- update (iterate) the facility management function public.update() -- unlink RTU unit sessions if they are closed for _, v in pairs(self.rtu_list) do util.filter_table(v, function (u) return u.is_connected() end) end -- check if test routines are allowed right now self.allow_testing = true for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit self.allow_testing = self.allow_testing and u.is_safe_idle() end -- current state for process control local charge_update = 0 local rate_update = 0 -- calculate moving averages for induction matrix if self.induction[1] ~= nil then local matrix = self.induction[1] ---@type unit_session local db = matrix.get_db() ---@type imatrix_session_db charge_update = db.tanks.last_update rate_update = db.state.last_update if (charge_update > 0) and (rate_update > 0) then if self.im_stat_init then self.avg_charge.record(util.joules_to_fe(db.tanks.energy), charge_update) self.avg_inflow.record(util.joules_to_fe(db.state.last_input), rate_update) self.avg_outflow.record(util.joules_to_fe(db.state.last_output), rate_update) else self.im_stat_init = true self.avg_charge.reset(util.joules_to_fe(db.tanks.energy)) self.avg_inflow.reset(util.joules_to_fe(db.state.last_input)) self.avg_outflow.reset(util.joules_to_fe(db.state.last_output)) end end else self.im_stat_init = false end self.all_sys_ok = true for i = 1, #self.units do self.all_sys_ok = self.all_sys_ok and not self.units[i].get_control_inf().degraded end ------------------------- -- Run Process Control -- ------------------------- --#region Process Control local avg_charge = self.avg_charge.compute() local avg_inflow = self.avg_inflow.compute() local now = util.time_s() local state_changed = self.mode ~= self.last_mode local next_mode = self.mode -- once auto control is started, sort the priority sublists by limits if state_changed then self.saturated = false log.debug("FAC: state changed from " .. PROCESS_NAMES[self.last_mode + 1] .. " to " .. PROCESS_NAMES[self.mode + 1]) if (self.last_mode == PROCESS.INACTIVE) or (self.last_mode == PROCESS.GEN_RATE_FAULT_IDLE) then self.start_fail = START_STATUS.OK if (self.mode ~= PROCESS.MATRIX_FAULT_IDLE) and (self.mode ~= PROCESS.SYSTEM_ALARM_IDLE) then -- auto clear ASCRAM self.ascram = false self.ascram_reason = AUTO_SCRAM.NONE end local blade_count = nil self.max_burn_combined = 0.0 for i = 1, #self.prio_defs do table.sort(self.prio_defs[i], ---@param a reactor_unit ---@param b reactor_unit function (a, b) return a.get_control_inf().lim_br100 < b.get_control_inf().lim_br100 end ) for _, u in pairs(self.prio_defs[i]) do local u_blade_count = u.get_control_inf().blade_count if blade_count == nil then blade_count = u_blade_count elseif (u_blade_count ~= blade_count) and (self.mode == PROCESS.GEN_RATE) then log.warning("FAC: cannot start GEN_RATE process with inconsistent unit blade counts") next_mode = PROCESS.INACTIVE self.start_fail = START_STATUS.BLADE_MISMATCH end if self.start_fail == START_STATUS.OK then u.auto_engage() end self.max_burn_combined = self.max_burn_combined + (u.get_control_inf().lim_br100 / 100.0) end end if blade_count == nil then -- no units log.warning("FAC: cannot start process control with 0 units assigned") next_mode = PROCESS.INACTIVE self.start_fail = START_STATUS.NO_UNITS else self.charge_conversion = blade_count * POWER_PER_BLADE end elseif self.mode == PROCESS.INACTIVE then for i = 1, #self.prio_defs do -- SCRAM reactors and disengage auto control -- use manual SCRAM since inactive was requested, and automatic SCRAM trips an alarm for _, u in pairs(self.prio_defs[i]) do u.scram() u.auto_disengage() end end log.info("FAC: disengaging auto control (now inactive)") end self.initial_ramp = true self.waiting_on_ramp = false self.waiting_on_stable = false else self.initial_ramp = false end -- update unit ready state local assign_count = 0 self.units_ready = true for i = 1, #self.prio_defs do for _, u in pairs(self.prio_defs[i]) do assign_count = assign_count + 1 self.units_ready = self.units_ready and u.get_control_inf().ready end end -- perform mode-specific operations if self.mode == PROCESS.INACTIVE then if not self.units_ready then self.status_text = { "NOT READY", "assigned units not ready" } else -- clear ASCRAM once ready self.ascram = false self.ascram_reason = AUTO_SCRAM.NONE if self.start_fail == START_STATUS.NO_UNITS and assign_count == 0 then self.status_text = { "START FAILED", "no units were assigned" } elseif self.start_fail == START_STATUS.BLADE_MISMATCH then self.status_text = { "START FAILED", "turbine blade count mismatch" } else self.status_text = { "IDLE", "control disengaged" } end end elseif self.mode == PROCESS.MAX_BURN then -- run units at their limits if state_changed then self.time_start = now self.saturated = true self.status_text = { "MONITORED MODE", "running reactors at limit" } log.info(util.c("FAC: MAX_BURN process mode started")) end _allocate_burn_rate(self.max_burn_combined, true) elseif self.mode == PROCESS.BURN_RATE then -- a total aggregate burn rate if state_changed then self.time_start = now self.status_text = { "BURN RATE MODE", "running" } log.info(util.c("FAC: BURN_RATE process mode started")) end local unallocated = _allocate_burn_rate(self.burn_target, true) self.saturated = self.burn_target == self.max_burn_combined or unallocated > 0 elseif self.mode == PROCESS.CHARGE then -- target a level of charge if state_changed then self.time_start = now self.last_time = now self.last_error = 0 self.accumulator = 0 self.status_text = { "CHARGE MODE", "running control loop" } log.info(util.c("FAC: CHARGE mode starting PID control")) elseif self.last_update ~= charge_update then -- convert to kFE to make constants not microscopic local error = util.round((self.charge_setpoint - avg_charge) / 1000) / 1000 -- stop accumulator when saturated to avoid windup if not self.saturated then self.accumulator = self.accumulator + (error * (now - self.last_time)) end -- local runtime = now - self.time_start local integral = self.accumulator local derivative = (error - self.last_error) / (now - self.last_time) local P = (charge_Kp * error) local I = (charge_Ki * integral) local D = (charge_Kd * derivative) local output = P + I + D -- clamp at range -> output clamped (out_c) local out_c = math.max(0, math.min(output, self.max_burn_combined)) self.saturated = output ~= out_c -- log.debug(util.sprintf("CHARGE[%f] { CHRG[%f] ERR[%f] INT[%f] => OUT[%f] OUT_C[%f] <= P[%f] I[%f] D[%d] }", -- runtime, avg_charge, error, integral, output, out_c, P, I, D)) _allocate_burn_rate(out_c, true) self.last_time = now self.last_error = error end self.last_update = charge_update elseif self.mode == PROCESS.GEN_RATE then -- target a rate of generation if state_changed then -- estimate an initial output local output = self.gen_rate_setpoint / self.charge_conversion local unallocated = _allocate_burn_rate(output, true) self.saturated = output >= self.max_burn_combined or unallocated > 0 self.waiting_on_ramp = true self.status_text = { "GENERATION MODE", "starting up" } log.info(util.c("FAC: GEN_RATE process mode initial ramp started (initial target is ", output, " mB/t)")) elseif self.waiting_on_ramp then if _all_units_ramped() then self.waiting_on_ramp = false self.waiting_on_stable = true self.time_start = now self.status_text = { "GENERATION MODE", "holding ramped rate" } log.info("FAC: GEN_RATE process mode initial ramp completed, holding for stablization time") end elseif self.waiting_on_stable then if (now - self.time_start) > FLOW_STABILITY_DELAY_S then self.waiting_on_stable = false self.time_start = now self.last_time = now self.last_error = 0 self.accumulator = 0 self.status_text = { "GENERATION MODE", "running control loop" } log.info("FAC: GEN_RATE process mode initial hold completed, starting PID control") end elseif self.last_update ~= rate_update then -- convert to MFE (in rounded kFE) to make constants not microscopic local error = util.round((self.gen_rate_setpoint - avg_inflow) / 1000) / 1000 -- stop accumulator when saturated to avoid windup if not self.saturated then self.accumulator = self.accumulator + (error * (now - self.last_time)) end -- local runtime = now - self.time_start local integral = self.accumulator local derivative = (error - self.last_error) / (now - self.last_time) local P = (rate_Kp * error) local I = (rate_Ki * integral) local D = (rate_Kd * derivative) -- velocity (rate) (derivative of charge level => rate) feed forward local FF = self.gen_rate_setpoint / self.charge_conversion local output = P + I + D + FF -- clamp at range -> output clamped (sp_c) local out_c = math.max(0, math.min(output, self.max_burn_combined)) self.saturated = output ~= out_c -- log.debug(util.sprintf("GEN_RATE[%f] { RATE[%f] ERR[%f] INT[%f] => OUT[%f] OUT_C[%f] <= P[%f] I[%f] D[%f] }", -- runtime, avg_inflow, error, integral, output, out_c, P, I, D)) _allocate_burn_rate(out_c, false) self.last_time = now self.last_error = error end self.last_update = rate_update elseif self.mode == PROCESS.MATRIX_FAULT_IDLE then -- exceeded charge, wait until condition clears if self.ascram_reason == AUTO_SCRAM.NONE then next_mode = self.return_mode log.info("FAC: exiting matrix fault idle state due to fault resolution") elseif self.ascram_reason == AUTO_SCRAM.CRIT_ALARM then next_mode = PROCESS.SYSTEM_ALARM_IDLE log.info("FAC: exiting matrix fault idle state due to critical unit alarm") end elseif self.mode == PROCESS.SYSTEM_ALARM_IDLE then -- do nothing, wait for user to confirm (stop and reset) elseif self.mode == PROCESS.GEN_RATE_FAULT_IDLE then -- system faulted (degraded/not ready) while running generation rate mode -- mode will need to be fully restarted once everything is OK to re-ramp to feed-forward if self.units_ready then log.info("FAC: system ready after faulting out of GEN_RATE process mode, switching back...") next_mode = PROCESS.GEN_RATE end elseif self.mode ~= PROCESS.INACTIVE then log.error(util.c("FAC: unsupported process mode ", self.mode, ", switching to inactive")) next_mode = PROCESS.INACTIVE end --#endregion ------------------------------ -- Evaluate Automatic SCRAM -- ------------------------------ --#region Automatic SCRAM local astatus = self.ascram_status if self.induction[1] ~= nil then local matrix = self.induction[1] ---@type unit_session local db = matrix.get_db() ---@type imatrix_session_db -- clear matrix disconnected if astatus.matrix_dc then astatus.matrix_dc = false log.info("FAC: induction matrix reconnected, clearing ASCRAM condition") end -- check matrix fill too high local was_fill = astatus.matrix_fill astatus.matrix_fill = (db.tanks.energy_fill >= ALARM_LIMS.CHARGE_HIGH) or (astatus.matrix_fill and db.tanks.energy_fill > ALARM_LIMS.CHARGE_RE_ENABLE) if was_fill and not astatus.matrix_fill then log.info("FAC: charge state of induction matrix entered acceptable range <= " .. (ALARM_LIMS.CHARGE_RE_ENABLE * 100) .. "%") end -- check for critical unit alarms astatus.crit_alarm = false for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit if u.has_alarm_min_prio(PRIO.CRITICAL) then astatus.crit_alarm = true break end end -- check for facility radiation if self.envd[1] ~= nil then local envd = self.envd[1] ---@type unit_session local e_db = envd.get_db() ---@type envd_session_db astatus.radiation = e_db.radiation_raw > ALARM_LIMS.FAC_HIGH_RAD else -- don't clear, if it is true then we lost it with high radiation, so just keep alarming -- operator can restart the system or hit the stop/reset button end -- system not ready, will need to restart GEN_RATE mode -- clears when we enter the fault waiting state astatus.gen_fault = self.mode == PROCESS.GEN_RATE and not self.units_ready else astatus.matrix_dc = true end if (self.mode ~= PROCESS.INACTIVE) and (self.mode ~= PROCESS.SYSTEM_ALARM_IDLE) then local scram = astatus.matrix_dc or astatus.matrix_fill or astatus.crit_alarm or astatus.gen_fault if scram and not self.ascram then -- SCRAM all units for i = 1, #self.prio_defs do for _, u in pairs(self.prio_defs[i]) do u.auto_scram() end end if astatus.crit_alarm then -- highest priority alarm next_mode = PROCESS.SYSTEM_ALARM_IDLE self.ascram_reason = AUTO_SCRAM.CRIT_ALARM self.status_text = { "AUTOMATIC SCRAM", "critical unit alarm tripped" } log.info("FAC: automatic SCRAM due to critical unit alarm") log.warning("FAC: emergency exit of process control due to critical unit alarm") elseif astatus.radiation then next_mode = PROCESS.SYSTEM_ALARM_IDLE self.ascram_reason = AUTO_SCRAM.RADIATION self.status_text = { "AUTOMATIC SCRAM", "facility radiation high" } log.info("FAC: automatic SCRAM due to high facility radiation") elseif astatus.matrix_dc then next_mode = PROCESS.MATRIX_FAULT_IDLE self.ascram_reason = AUTO_SCRAM.MATRIX_DC self.status_text = { "AUTOMATIC SCRAM", "induction matrix disconnected" } if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then self.return_mode = self.mode end log.info("FAC: automatic SCRAM due to induction matrix disconnection") elseif astatus.matrix_fill then next_mode = PROCESS.MATRIX_FAULT_IDLE self.ascram_reason = AUTO_SCRAM.MATRIX_FILL self.status_text = { "AUTOMATIC SCRAM", "induction matrix fill high" } if self.mode ~= PROCESS.MATRIX_FAULT_IDLE then self.return_mode = self.mode end log.info("FAC: automatic SCRAM due to induction matrix high charge") elseif astatus.gen_fault then -- lowest priority alarm next_mode = PROCESS.GEN_RATE_FAULT_IDLE self.ascram_reason = AUTO_SCRAM.GEN_FAULT self.status_text = { "GENERATION MODE IDLE", "paused: system not ready" } log.info("FAC: automatic SCRAM due to unit problem while in GEN_RATE mode, will resume once all units are ready") end end self.ascram = scram if not self.ascram then self.ascram_reason = AUTO_SCRAM.NONE -- reset PLC RPS trips if we should for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit u.auto_cond_rps_reset() end end end --#endregion -- update last mode and set next mode self.last_mode = self.mode self.mode = next_mode ------------------------- -- Handle Redstone I/O -- ------------------------- if #self.redstone > 0 then -- handle facility SCRAM if self.io_ctl.digital_read(IO.F_SCRAM) then for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit u.cond_scram() end end -- handle facility ack if self.io_ctl.digital_read(IO.F_ACK) then public.ack_all() end -- update facility alarm output (check if emergency+ alarms are active) local has_alarm = false for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit if u.has_alarm_min_prio(PRIO.EMERGENCY) then has_alarm = true break end end self.io_ctl.digital_write(IO.F_ALARM, has_alarm) end ---------------- -- Unit Tasks -- ---------------- local insufficent_po_rate = false local need_emcool = false for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit -- update auto waste processing if u.get_control_inf().waste_mode == WASTE_MODE.AUTO then if (u.get_sna_rate() * 10.0) < u.get_burn_rate() then insufficent_po_rate = true end end -- check if unit activated emergency coolant & uses facility tanks if (cooling_conf.fac_tank_mode > 0) and u.is_emer_cool_tripped() and (cooling_conf.fac_tank_defs[i] == 2) then need_emcool = true end end -- update waste product if self.waste_product == WASTE.PLUTONIUM or (self.pu_fallback and insufficent_po_rate) then self.current_waste_product = WASTE.PLUTONIUM else self.current_waste_product = self.waste_product end -- make sure dynamic tanks are allowing outflow if required -- set all, rather than trying to determine which is for which (simpler & safer) -- there should be no need for any to be in fill only mode if need_emcool then for i = 1, #self.tanks do local session = self.tanks[i] ---@type unit_session local tank = session.get_db() ---@type dynamicv_session_db if tank.state.container_mode == CONTAINER_MODE.FILL then session.get_cmd_queue().push_data(DTV_RTU_S_DATA.SET_CONT_MODE, CONTAINER_MODE.BOTH) end end end ------------------------ -- Update Alarm Tones -- ------------------------ local allow_test = self.allow_testing and self.test_tone_set local alarms = { false, false, false, false, false, false, false, false, false, false, false, false } -- reset tone states before re-evaluting for i = 1, #self.tone_states do self.tone_states[i] = false end if allow_test then alarms = self.test_alarm_states else -- check all alarms for all units for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit for id, alarm in pairs(u.get_alarms()) do alarms[id] = alarms[id] or (alarm == ALARM_STATE.TRIPPED) end end if not self.test_tone_reset then -- clear testing alarms if we aren't using them for i = 1, #self.test_alarm_states do self.test_alarm_states[i] = false end end end -- Evaluate Alarms -- -- containment breach is worst case CRITICAL alarm, this takes priority if alarms[ALARM.ContainmentBreach] then self.tone_states[TONE.T_1800Hz_Int_4Hz] = true else -- critical damage is highest priority CRITICAL level alarm if alarms[ALARM.CriticalDamage] then self.tone_states[TONE.T_660Hz_Int_125ms] = true else -- EMERGENCY level alarms + URGENT over temp if alarms[ALARM.ReactorDamage] or alarms[ALARM.ReactorOverTemp] or alarms[ALARM.ReactorWasteLeak] then self.tone_states[TONE.T_544Hz_440Hz_Alt] = true -- URGENT level turbine trip elseif alarms[ALARM.TurbineTrip] then self.tone_states[TONE.T_745Hz_Int_1Hz] = true -- URGENT level reactor lost elseif alarms[ALARM.ReactorLost] then self.tone_states[TONE.T_340Hz_Int_2Hz] = true -- TIMELY level alarms elseif alarms[ALARM.ReactorHighTemp] or alarms[ALARM.ReactorHighWaste] or alarms[ALARM.RCSTransient] then self.tone_states[TONE.T_800Hz_Int] = true end end -- check RPS transient URGENT level alarm if alarms[ALARM.RPSTransient] then self.tone_states[TONE.T_1000Hz_Int] = true -- disable really painful audio combination self.tone_states[TONE.T_340Hz_Int_2Hz] = false end end -- radiation is a big concern, always play this CRITICAL level alarm if active if alarms[ALARM.ContainmentRadiation] then self.tone_states[TONE.T_800Hz_1000Hz_Alt] = true -- we are going to disable the RPS trip alarm audio due to conflict, and if it was enabled -- then we can re-enable the reactor lost alarm audio since it doesn't painfully combine with this one if self.tone_states[TONE.T_1000Hz_Int] and alarms[ALARM.ReactorLost] then self.tone_states[TONE.T_340Hz_Int_2Hz] = true end -- it sounds *really* bad if this is in conjunction with these other tones, so disable them self.tone_states[TONE.T_745Hz_Int_1Hz] = false self.tone_states[TONE.T_800Hz_Int] = false self.tone_states[TONE.T_1000Hz_Int] = false end -- add to tone states if testing is active if allow_test then for i = 1, #self.tone_states do self.tone_states[i] = self.tone_states[i] or self.test_tone_states[i] end self.test_tone_reset = false else if not self.test_tone_reset then -- clear testing tones if we aren't using them for i = 1, #self.test_tone_states do self.test_tone_states[i] = false end end -- flag that tones were reset self.test_tone_set = false self.test_tone_reset = true end end -- call the update function of all units in the facility
-- additionally sets the requested auto waste mode if applicable function public.update_units() for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit u.auto_set_waste(self.current_waste_product) u.update() end end -- COMMANDS -- -- SCRAM all reactor units function public.scram_all() for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit u.scram() end end -- ack all alarms on all reactor units function public.ack_all() for i = 1, #self.units do local u = self.units[i] ---@type reactor_unit u.ack_all() end end -- stop auto control function public.auto_stop() self.mode = PROCESS.INACTIVE end -- set automatic control configuration and start the process ---@param config coord_auto_config configuration ---@return table response ready state (successfully started) and current configuration (after updating) function public.auto_start(config) local charge_scaler = 1000000 -- convert MFE to FE local gen_scaler = 1000 -- convert kFE to FE local ready = false -- load up current limits local limits = {} for i = 1, num_reactors do local u = self.units[i] ---@type reactor_unit limits[i] = u.get_control_inf().lim_br100 * 100 end -- only allow changes if not running if self.mode == PROCESS.INACTIVE then if (type(config.mode) == "number") and (config.mode > PROCESS.INACTIVE) and (config.mode <= PROCESS.GEN_RATE) then self.mode_set = config.mode end if (type(config.burn_target) == "number") and config.burn_target >= 0.1 then self.burn_target = config.burn_target end if (type(config.charge_target) == "number") and config.charge_target >= 0 then self.charge_setpoint = config.charge_target * charge_scaler end if (type(config.gen_target) == "number") and config.gen_target >= 0 then self.gen_rate_setpoint = config.gen_target * gen_scaler end if (type(config.limits) == "table") and (#config.limits == num_reactors) then for i = 1, num_reactors do local limit = config.limits[i] if (type(limit) == "number") and (limit >= 0.1) then limits[i] = limit self.units[i].set_burn_limit(limit) end end end ready = self.mode_set > 0 if (self.mode_set == PROCESS.CHARGE) and (self.charge_setpoint <= 0) or (self.mode_set == PROCESS.GEN_RATE) and (self.gen_rate_setpoint <= 0) or (self.mode_set == PROCESS.BURN_RATE) and (self.burn_target < 0.1) then ready = false end ready = ready and self.units_ready if ready then self.mode = self.mode_set end end return { ready, self.mode_set, self.burn_target, self.charge_setpoint / charge_scaler, self.gen_rate_setpoint / gen_scaler, limits } end -- SETTINGS -- -- set the automatic control group of a unit ---@param unit_id integer unit ID ---@param group integer group ID or 0 for independent function public.set_group(unit_id, group) if (group >= 0 and group <= 4) and (unit_id > 0 and unit_id <= num_reactors) and self.mode == PROCESS.INACTIVE then -- remove from old group if previously assigned local old_group = self.group_map[unit_id] if old_group ~= 0 then util.filter_table(self.prio_defs[old_group], function (u) return u.get_id() ~= unit_id end) end self.group_map[unit_id] = group -- add to group if not independent if group > 0 then table.insert(self.prio_defs[group], self.units[unit_id]) end end end -- set waste production ---@param product WASTE_PRODUCT target product ---@return WASTE_PRODUCT product newly set value, if valid function public.set_waste_product(product) if product == WASTE.PLUTONIUM or product == WASTE.POLONIUM or product == WASTE.ANTI_MATTER then self.waste_product = product end return self.waste_product end -- enable/disable plutonium fallback ---@param enabled boolean requested state ---@return boolean enabled newly set value function public.set_pu_fallback(enabled) self.pu_fallback = enabled == true return self.pu_fallback end -- DIAGNOSTIC TESTING -- -- attempt to set a test tone state ---@param id TONE|0 tone ID or 0 to disable all ---@param state boolean state ---@return boolean allow_testing, table test_tone_states function public.diag_set_test_tone(id, state) if self.allow_testing then self.test_tone_set = true self.test_tone_reset = false if id == 0 then for i = 1, #self.test_tone_states do self.test_tone_states[i] = false end else self.test_tone_states[id] = state end end return self.allow_testing, self.test_tone_states end -- attempt to set a test alarm state ---@param id ALARM|0 alarm ID or 0 to disable all ---@param state boolean state ---@return boolean allow_testing, table test_alarm_states function public.diag_set_test_alarm(id, state) if self.allow_testing then self.test_tone_set = true self.test_tone_reset = false if id == 0 then for i = 1, #self.test_alarm_states do self.test_alarm_states[i] = false end else self.test_alarm_states[id] = state end end return self.allow_testing, self.test_alarm_states end -- READ STATES/PROPERTIES -- -- get current alarm tone on/off states ---@nodiscard function public.get_alarm_tones() return self.tone_states end -- get build properties of all facility devices ---@nodiscard ---@param type RTU_UNIT_TYPE? type or nil to include only a particular unit type, or to include all if nil function public.get_build(type) local all = type == nil local build = {} if all or type == RTU_UNIT_TYPE.IMATRIX then build.induction = {} for i = 1, #self.induction do local matrix = self.induction[i] ---@type unit_session build.induction[matrix.get_device_idx()] = { matrix.get_db().formed, matrix.get_db().build } end end if all or type == RTU_UNIT_TYPE.SPS then build.sps = {} for i = 1, #self.sps do local sps = self.sps[i] ---@type unit_session build.sps[sps.get_device_idx()] = { sps.get_db().formed, sps.get_db().build } end end if all or type == RTU_UNIT_TYPE.DYNAMIC_VALVE then build.tanks = {} for i = 1, #self.tanks do local tank = self.tanks[i] ---@type unit_session build.tanks[tank.get_device_idx()] = { tank.get_db().formed, tank.get_db().build } end end return build end -- get automatic process control status ---@nodiscard function public.get_control_status() local astat = self.ascram_status return { self.all_sys_ok, self.units_ready, self.mode, self.waiting_on_ramp or self.waiting_on_stable, self.at_max_burn or self.saturated, self.ascram, astat.matrix_dc, astat.matrix_fill, astat.crit_alarm, astat.radiation, astat.gen_fault or self.mode == PROCESS.GEN_RATE_FAULT_IDLE, self.status_text[1], self.status_text[2], self.group_map, self.current_waste_product, (self.current_waste_product == WASTE.PLUTONIUM) and (self.waste_product ~= WASTE.PLUTONIUM) } end -- get RTU statuses ---@nodiscard function public.get_rtu_statuses() local status = {} -- total count of all connected RTUs in the facility status.count = self.rtu_conn_count -- power averages from induction matricies status.power = { self.avg_charge.compute(), self.avg_inflow.compute(), self.avg_outflow.compute() } -- status of induction matricies (including tanks) status.induction = {} for i = 1, #self.induction do local matrix = self.induction[i] ---@type unit_session local db = matrix.get_db() ---@type imatrix_session_db status.induction[matrix.get_device_idx()] = { matrix.is_faulted(), db.formed, db.state, db.tanks } end -- status of sps status.sps = {} for i = 1, #self.sps do local sps = self.sps[i] ---@type unit_session local db = sps.get_db() ---@type sps_session_db status.sps[sps.get_device_idx()] = { sps.is_faulted(), db.formed, db.state, db.tanks } end -- status of dynamic tanks status.tanks = {} for i = 1, #self.tanks do local tank = self.tanks[i] ---@type unit_session local db = tank.get_db() ---@type dynamicv_session_db status.tanks[tank.get_device_idx()] = { tank.is_faulted(), db.formed, db.state, db.tanks } end -- radiation monitors (environment detectors) status.rad_mon = {} for i = 1, #self.envd do local envd = self.envd[i] ---@type unit_session status.rad_mon[envd.get_device_idx()] = { envd.is_faulted(), envd.get_db().radiation } end return status end -- get the units in this facility ---@nodiscard function public.get_units() return self.units end return public end return facility