local log = require("scada-common.log") local rsio = require("scada-common.rsio") local types = require("scada-common.types") local util = require("scada-common.util") local logic = require("supervisor.unitlogic") local plc = require("supervisor.session.plc") local rsctl = require("supervisor.session.rsctl") local WASTE_MODE = types.WASTE_MODE local WASTE = types.WASTE_PRODUCT local ALARM = types.ALARM local PRIO = types.ALARM_PRIORITY local ALARM_STATE = types.ALARM_STATE local TRI_FAIL = types.TRI_FAIL local RTU_UNIT_TYPE = types.RTU_UNIT_TYPE local PLC_S_CMDS = plc.PLC_S_CMDS local IO = rsio.IO local DT_KEYS = { ReactorBurnR = "RBR", ReactorTemp = "RTP", ReactorFuel = "RFL", ReactorWaste = "RWS", ReactorCCool = "RCC", ReactorHCool = "RHC", BoilerWater = "BWR", BoilerSteam = "BST", BoilerCCool = "BCC", BoilerHCool = "BHC", TurbineSteam = "TST", TurbinePower = "TPR" } ---@enum ALARM_INT_STATE local AISTATE = { INACTIVE = 1, TRIPPING = 2, TRIPPED = 3, ACKED = 4, RING_BACK = 5, RING_BACK_TRIPPING = 6 } ---@class alarm_def ---@field state ALARM_INT_STATE internal alarm state ---@field trip_time integer time (ms) when first tripped ---@field hold_time integer time (s) to hold before tripping ---@field id ALARM alarm ID ---@field tier integer alarm urgency tier (0 = highest) -- burn rate to idle at local IDLE_RATE = 0.01 -- time (ms) to idle local IDLE_TIME = 15000 ---@class reactor_control_unit local unit = {} -- create a new reactor unit ---@nodiscard ---@param reactor_id integer reactor unit number ---@param num_boilers integer number of boilers expected ---@param num_turbines integer number of turbines expected function unit.new(reactor_id, num_boilers, num_turbines) ---@class _unit_self local self = { r_id = reactor_id, plc_s = nil, ---@class plc_session_struct plc_i = nil, ---@class plc_session num_boilers = num_boilers, num_turbines = num_turbines, types = { DT_KEYS = DT_KEYS, AISTATE = AISTATE }, -- rtus rtu_list = {}, redstone = {}, boilers = {}, turbines = {}, tanks = {}, snas = {}, envd = {}, -- redstone control io_ctl = nil, ---@type rs_controller valves = {}, ---@type unit_valves emcool_opened = false, -- auto control auto_engaged = false, auto_idle = false, auto_idling = false, auto_idle_start = 0, auto_was_alarmed = false, ramp_target_br100 = 0, -- state tracking deltas = {}, last_heartbeat = 0, last_radiation = 0, damage_decreasing = false, damage_initial = 0, damage_start = 0, damage_last = 0, damage_est_last = 0, waste_product = WASTE.PLUTONIUM, ---@type WASTE_PRODUCT status_text = { "UNKNOWN", "awaiting connection..." }, -- logic for alarms had_reactor = false, turbine_flow_stable = false, turbine_stability_data = {}, last_rate_change_ms = 0, ---@type rps_status last_rps_trips = { high_dmg = false, high_temp = false, low_cool = false, ex_waste = false, ex_hcool = false, no_fuel = false, fault = false, timeout = false, manual = false, automatic = false, sys_fail = false, force_dis = false }, plc_cache = { active = false, ok = false, rps_trip = false, ---@type rps_status rps_status = { high_dmg = false, high_temp = false, low_cool = false, ex_waste = false, ex_hcool = false, no_fuel = false, fault = false, timeout = false, manual = false, automatic = false, sys_fail = false, force_dis = false }, damage = 0, temp = 0, waste = 0 }, ---@class alarm_monitors alarms = { -- reactor lost under the condition of meltdown imminent ContainmentBreach = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ContainmentBreach, tier = PRIO.CRITICAL }, -- radiation monitor alarm for this unit ContainmentRadiation = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ContainmentRadiation, tier = PRIO.CRITICAL }, -- reactor offline after being online ReactorLost = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ReactorLost, tier = PRIO.TIMELY }, -- damage >100% CriticalDamage = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.CriticalDamage, tier = PRIO.CRITICAL }, -- reactor damage increasing ReactorDamage = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ReactorDamage, tier = PRIO.EMERGENCY }, -- reactor >1200K ReactorOverTemp = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ReactorOverTemp, tier = PRIO.URGENT }, -- reactor >=1150K ReactorHighTemp = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 1, id = ALARM.ReactorHighTemp, tier = PRIO.TIMELY }, -- waste = 100% ReactorWasteLeak = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ReactorWasteLeak, tier = PRIO.EMERGENCY }, -- waste >85% ReactorHighWaste = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 2, id = ALARM.ReactorHighWaste, tier = PRIO.URGENT }, -- RPS trip occured RPSTransient = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 2, id = ALARM.RPSTransient, tier = PRIO.TIMELY }, -- CoolantLevelLow, WaterLevelLow, TurbineOverSpeed, MaxWaterReturnFeed, RCPTrip, RCSFlowLow, BoilRateMismatch, CoolantFeedMismatch, -- SteamFeedMismatch, MaxWaterReturnFeed, RCS hardware fault RCSTransient = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 5, id = ALARM.RCSTransient, tier = PRIO.TIMELY }, -- "It's just a routine turbin' trip!" -Bill Gibson, "The China Syndrome" TurbineTrip = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 2, id = ALARM.TurbineTrip, tier = PRIO.URGENT } }, ---@class unit_db db = { ---@class annunciator annunciator = { -- reactor PLCOnline = false, PLCHeartbeat = false, -- alternate true/false to blink, each time there is a keep_alive RadiationMonitor = 1, AutoControl = false, ReactorSCRAM = false, ManualReactorSCRAM = false, AutoReactorSCRAM = false, RadiationWarning = false, RCPTrip = false, RCSFlowLow = false, CoolantLevelLow = false, ReactorTempHigh = false, ReactorHighDeltaT = false, FuelInputRateLow = false, WasteLineOcclusion = false, HighStartupRate = false, -- cooling RCSFault = false, EmergencyCoolant = 1, CoolantFeedMismatch = false, BoilRateMismatch = false, SteamFeedMismatch = false, MaxWaterReturnFeed = false, -- boilers BoilerOnline = {}, HeatingRateLow = {}, WaterLevelLow = {}, -- turbines TurbineOnline = {}, SteamDumpOpen = {}, TurbineOverSpeed = {}, GeneratorTrip = {}, TurbineTrip = {} }, ---@class alarms alarm_states = { ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE, ALARM_STATE.INACTIVE }, -- fields for facility control ---@class unit_control control = { ready = false, degraded = false, blade_count = 0, br100 = 0, lim_br100 = 0, waste_mode = WASTE_MODE.AUTO ---@type WASTE_MODE } } } -- list for RTU session management self.rtu_list = { self.redstone, self.boilers, self.turbines, self.tanks, self.snas, self.envd } -- init redstone RTU I/O controller self.io_ctl = rsctl.new(self.redstone) -- init boiler table fields for _ = 1, num_boilers do table.insert(self.db.annunciator.BoilerOnline, false) table.insert(self.db.annunciator.HeatingRateLow, false) end -- init turbine table fields for _ = 1, num_turbines do table.insert(self.db.annunciator.TurbineOnline, false) table.insert(self.db.annunciator.SteamDumpOpen, TRI_FAIL.OK) table.insert(self.db.annunciator.TurbineOverSpeed, false) table.insert(self.db.annunciator.GeneratorTrip, false) table.insert(self.db.annunciator.TurbineTrip, false) table.insert(self.turbine_stability_data, { time_state = 0, time_tanks = 0, rotation = 1 }) end -- PRIVATE FUNCTIONS -- --#region Time Derivative Utility Functions -- compute a change with respect to time of the given value ---@param key string value key ---@param value number value ---@param time number timestamp for value local function _compute_dt(key, value, time) if self.deltas[key] then local data = self.deltas[key] if time > data.last_t then data.dt = (value - data.last_v) / (time - data.last_t) data.last_v = value data.last_t = time end else self.deltas[key] = { last_t = time, last_v = value, dt = 0.0 } end end -- clear a delta ---@param key string value key local function _reset_dt(key) self.deltas[key] = nil end -- get the delta t of a value ---@nodiscard ---@param key string value key ---@return number value value or 0 if not known function self._get_dt(key) if self.deltas[key] then return self.deltas[key].dt else return 0.0 end end -- update all delta computations local function _dt__compute_all() if self.plc_i ~= nil then local plc_db = self.plc_i.get_db() local last_update_s = plc_db.last_status_update / 1000.0 _compute_dt(DT_KEYS.ReactorBurnR, plc_db.mek_status.act_burn_rate, last_update_s) _compute_dt(DT_KEYS.ReactorTemp, plc_db.mek_status.temp, last_update_s) _compute_dt(DT_KEYS.ReactorFuel, plc_db.mek_status.fuel, last_update_s) _compute_dt(DT_KEYS.ReactorWaste, plc_db.mek_status.waste, last_update_s) _compute_dt(DT_KEYS.ReactorCCool, plc_db.mek_status.ccool_amnt, last_update_s) _compute_dt(DT_KEYS.ReactorHCool, plc_db.mek_status.hcool_amnt, last_update_s) end for i = 1, #self.boilers do local boiler = self.boilers[i] ---@type unit_session local db = boiler.get_db() ---@type boilerv_session_db local last_update_s = db.tanks.last_update / 1000.0 _compute_dt(DT_KEYS.BoilerWater .. boiler.get_device_idx(), db.tanks.water.amount, last_update_s) _compute_dt(DT_KEYS.BoilerSteam .. boiler.get_device_idx(), db.tanks.steam.amount, last_update_s) _compute_dt(DT_KEYS.BoilerCCool .. boiler.get_device_idx(), db.tanks.ccool.amount, last_update_s) _compute_dt(DT_KEYS.BoilerHCool .. boiler.get_device_idx(), db.tanks.hcool.amount, last_update_s) end for i = 1, #self.turbines do local turbine = self.turbines[i] ---@type unit_session local db = turbine.get_db() ---@type turbinev_session_db local last_update_s = db.tanks.last_update / 1000.0 _compute_dt(DT_KEYS.TurbineSteam .. turbine.get_device_idx(), db.tanks.steam.amount, last_update_s) _compute_dt(DT_KEYS.TurbinePower .. turbine.get_device_idx(), db.tanks.energy, last_update_s) end end --#endregion --#region Redstone I/O -- create a generic valve interface ---@nodiscard ---@param port IO_PORT local function _make_valve_iface(port) ---@class unit_valve_iface local iface = { open = function () self.io_ctl.digital_write(port, true) end, close = function () self.io_ctl.digital_write(port, false) end, -- check valve state ---@nodiscard ---@return 0|1|2 0 for not connected, 1 for inactive, 2 for active check = function () return util.trinary(self.io_ctl.is_connected(port), util.trinary(self.io_ctl.digital_read(port), 2, 1), 0) end } return iface end -- valves local waste_pu = _make_valve_iface(IO.WASTE_PU) local waste_sna = _make_valve_iface(IO.WASTE_PO) local waste_po = _make_valve_iface(IO.WASTE_POPL) local waste_sps = _make_valve_iface(IO.WASTE_AM) local emer_cool = _make_valve_iface(IO.U_EMER_COOL) ---@class unit_valves self.valves = { waste_pu = waste_pu, waste_sna = waste_sna, waste_po = waste_po, waste_sps = waste_sps, emer_cool = emer_cool } -- route reactor waste for a given waste product ---@param product WASTE_PRODUCT waste product to route valves for local function _set_waste_valves(product) self.waste_product = product if product == WASTE.PLUTONIUM then -- route through plutonium generation waste_pu.open() waste_sna.close() waste_po.close() waste_sps.close() elseif product == WASTE.POLONIUM then -- route through polonium generation into pellets waste_pu.close() waste_sna.open() waste_po.open() waste_sps.close() elseif product == WASTE.ANTI_MATTER then -- route through polonium generation into SPS waste_pu.close() waste_sna.open() waste_po.close() waste_sps.open() end end --#endregion -- PUBLIC FUNCTIONS -- ---@class reactor_unit local public = {} --#region Add/Link Devices -- link the PLC ---@param plc_session plc_session_struct function public.link_plc_session(plc_session) self.had_reactor = true self.plc_s = plc_session self.plc_i = plc_session.instance -- reset deltas _reset_dt(DT_KEYS.ReactorTemp) _reset_dt(DT_KEYS.ReactorFuel) _reset_dt(DT_KEYS.ReactorWaste) _reset_dt(DT_KEYS.ReactorCCool) _reset_dt(DT_KEYS.ReactorHCool) end -- link a redstone RTU session ---@param rs_unit unit_session function public.add_redstone(rs_unit) table.insert(self.redstone, rs_unit) -- send or re-send waste settings _set_waste_valves(self.waste_product) end -- link a turbine RTU session ---@param turbine unit_session ---@return boolean linked turbine accepted to associated device slot function public.add_turbine(turbine) if #self.turbines < num_turbines and turbine.get_device_idx() <= num_turbines then table.insert(self.turbines, turbine) -- reset deltas _reset_dt(DT_KEYS.TurbineSteam .. turbine.get_device_idx()) _reset_dt(DT_KEYS.TurbinePower .. turbine.get_device_idx()) return true else return false end end -- link a boiler RTU session ---@param boiler unit_session ---@return boolean linked boiler accepted to associated device slot function public.add_boiler(boiler) if #self.boilers < num_boilers and boiler.get_device_idx() <= num_boilers then table.insert(self.boilers, boiler) -- reset deltas _reset_dt(DT_KEYS.BoilerWater .. boiler.get_device_idx()) _reset_dt(DT_KEYS.BoilerSteam .. boiler.get_device_idx()) _reset_dt(DT_KEYS.BoilerCCool .. boiler.get_device_idx()) _reset_dt(DT_KEYS.BoilerHCool .. boiler.get_device_idx()) return true else return false end end -- link a dynamic tank RTU session ---@param dynamic_tank unit_session ---@return boolean linked dynamic tank accepted (max 1) function public.add_tank(dynamic_tank) if #self.tanks == 0 then table.insert(self.tanks, dynamic_tank) return true else return false end end -- link a solar neutron activator RTU session ---@param sna unit_session function public.add_sna(sna) table.insert(self.snas, sna) end -- link an environment detector RTU session ---@param envd unit_session ---@return boolean linked environment detector accepted (max 1) function public.add_envd(envd) if #self.envd == 0 then table.insert(self.envd, envd) return true else return false end end -- purge devices associated with the given RTU session ID ---@param session integer RTU session ID function public.purge_rtu_devices(session) for _, v in pairs(self.rtu_list) do util.filter_table(v, function (s) return s.get_session_id() ~= session end) end end --#endregion --#region Update Session -- update (iterate) this unit function public.update() -- unlink PLC if session was closed if self.plc_s ~= nil and not self.plc_s.open then self.plc_s = nil self.plc_i = nil self.db.control.br100 = 0 end -- unlink RTU unit sessions if they are closed for _, v in pairs(self.rtu_list) do util.filter_table(v, function (u) return u.is_connected() end) end -- update degraded state for auto control self.db.control.degraded = (#self.boilers ~= num_boilers) or (#self.turbines ~= num_turbines) or (self.plc_i == nil) -- check boilers formed/faulted for i = 1, #self.boilers do local sess = self.boilers[i] ---@type unit_session local boiler = sess.get_db() ---@type boilerv_session_db if sess.is_faulted() or not boiler.formed then self.db.control.degraded = true end end -- check turbines formed/faulted for i = 1, #self.turbines do local sess = self.turbines[i] ---@type unit_session local turbine = sess.get_db() ---@type turbinev_session_db if sess.is_faulted() or not turbine.formed then self.db.control.degraded = true end end -- plc instance checks if self.plc_i ~= nil then -- check if degraded local rps = self.plc_i.get_rps() if rps.fault or rps.sys_fail then self.db.control.degraded = true end -- re-engage auto lock if it reconnected without it if self.auto_engaged and not self.plc_i.is_auto_locked() then self.plc_i.auto_lock(true) end -- stop idling when completed if self.auto_idling and ((util.time_ms() - self.auto_idle_start) > IDLE_TIME) then log.info(util.c("UNIT ", self.r_id, ": completed idling period")) self.auto_idling = false self.plc_i.auto_set_burn(0, false) end end -- update deltas _dt__compute_all() -- update annunciator logic logic.update_annunciator(self) -- update alarm status logic.update_alarms(self) -- if in auto mode, SCRAM on certain alarms logic.update_auto_safety(public, self) -- update status text logic.update_status_text(self) -- handle redstone I/O if #self.redstone > 0 then logic.handle_redstone(self) elseif not self.plc_cache.rps_trip then self.emcool_opened = false end end --#endregion --#region Auto Control Operations -- engage automatic control function public.auto_engage() self.auto_engaged = true if self.plc_i ~= nil then log.debug(util.c("UNIT ", self.r_id, ": engaged auto control")) self.plc_i.auto_lock(true) end end -- disengage automatic control function public.auto_disengage() self.auto_engaged = false if self.plc_i ~= nil then log.debug(util.c("UNIT ", self.r_id, ": disengaged auto control")) self.plc_i.auto_lock(false) self.db.control.br100 = 0 end end -- set automatic control idling mode to change behavior when given a burn rate command of zero
-- - enabling it will hold the reactor at 0.01 mB/t for a period when commanded zero before disabling -- - disabling it will stop the reactor when commanded zero ---@param idle boolean true to enable, false to disable (and stop) function public.auto_set_idle(idle) if not (idle and self.auto_idle) then self.auto_idling = false self.auto_idle_start = 0 end if idle ~= self.auto_idle then log.debug(util.c("UNIT ", self.r_id, ": idling mode changed to ", idle)) end self.auto_idle = idle end -- get the actual limit of this unit
-- if it is degraded or not ready, the limit will be 0 ---@nodiscard ---@return integer lim_br100 function public.auto_get_effective_limit() local ctrl = self.db.control if (not ctrl.ready) or ctrl.degraded or self.plc_cache.rps_trip then -- log.debug(util.c("UNIT ", self.r_id, ": effective limit is zero! ready[", ctrl.ready, "] degraded[", ctrl.degraded, "] rps_trip[", self.plc_cache.rps_trip, "]")) ctrl.br100 = 0 return 0 else return ctrl.lim_br100 end end -- set the automatic burn rate based on the last set burn rate in 100ths ---@param ramp boolean true to ramp to rate, false to set right away function public.auto_commit_br100(ramp) if self.auto_engaged then if self.plc_i ~= nil then log.debug(util.c("UNIT ", self.r_id, ": commit br100 of ", self.db.control.br100, " with ramp set to ", ramp)) local rate = self.db.control.br100 / 100 if self.auto_idle then if rate <= IDLE_RATE then if self.auto_idle_start == 0 then self.auto_idling = true self.auto_idle_start = util.time_ms() log.info(util.c("UNIT ", self.r_id, ": started idling at ", IDLE_RATE, " mB/t")) rate = IDLE_RATE elseif (util.time_ms() - self.auto_idle_start) > IDLE_TIME then if self.auto_idling then self.auto_idling = false log.info(util.c("UNIT ", self.r_id, ": completed idling period")) end else log.debug(util.c("UNIT ", self.r_id, ": continuing idle at ", IDLE_RATE, " mB/t")) rate = IDLE_RATE end else self.auto_idling = false self.auto_idle_start = 0 end end self.plc_i.auto_set_burn(rate, ramp) if ramp then self.ramp_target_br100 = self.db.control.br100 end end end end -- check if ramping is complete (burn rate is same as target) ---@nodiscard ---@return boolean complete function public.auto_ramp_complete() if self.plc_i ~= nil then return self.plc_i.is_ramp_complete() or (self.plc_i.get_status().act_burn_rate == 0 and self.db.control.br100 == 0) or public.auto_get_effective_limit() == 0 else return true end end -- perform an automatic SCRAM function public.auto_scram() if self.plc_s ~= nil then self.db.control.br100 = 0 self.plc_s.in_queue.push_command(PLC_S_CMDS.ASCRAM) end end -- queue a command to clear timeout/auto-scram if set function public.auto_cond_rps_reset() if self.plc_s ~= nil and self.plc_i ~= nil and (not self.auto_was_alarmed) and (not self.emcool_opened) then local rps = self.plc_i.get_rps() if rps.timeout or rps.automatic then self.plc_i.auto_lock(true) -- if it timed out/restarted, auto lock was lost, so re-lock it self.plc_s.in_queue.push_command(PLC_S_CMDS.RPS_AUTO_RESET) end end end -- set automatic waste product if mode is set to auto ---@param product WASTE_PRODUCT waste product to generate function public.auto_set_waste(product) if self.db.control.waste_mode == WASTE_MODE.AUTO then self.waste_product = product _set_waste_valves(product) end end --#endregion --#region Operations -- queue a command to disable the reactor function public.disable() if self.plc_s ~= nil then self.plc_s.in_queue.push_command(PLC_S_CMDS.DISABLE) end end -- queue a command to SCRAM the reactor function public.scram() if self.plc_s ~= nil then self.plc_s.in_queue.push_command(PLC_S_CMDS.SCRAM) end end -- queue a SCRAM command only if a manual SCRAM has not already occured function public.cond_scram() if self.plc_s ~= nil and not self.plc_cache.rps_status.manual then self.plc_s.in_queue.push_command(PLC_S_CMDS.SCRAM) end end -- acknowledge all alarms (if possible) function public.ack_all() for i = 1, #self.db.alarm_states do if self.db.alarm_states[i] == ALARM_STATE.TRIPPED then self.db.alarm_states[i] = ALARM_STATE.ACKED end end end -- acknowledge an alarm (if possible) ---@param id ALARM alarm ID function public.ack_alarm(id) if type(id) == "number" and self.db.alarm_states[id] == ALARM_STATE.TRIPPED then self.db.alarm_states[id] = ALARM_STATE.ACKED end end -- reset an alarm (if possible) ---@param id ALARM alarm ID function public.reset_alarm(id) if type(id) == "number" and self.db.alarm_states[id] == ALARM_STATE.RING_BACK then self.db.alarm_states[id] = ALARM_STATE.INACTIVE end end -- set waste processing mode ---@param mode WASTE_MODE processing mode function public.set_waste_mode(mode) self.db.control.waste_mode = mode if mode == WASTE_MODE.MANUAL_PLUTONIUM then _set_waste_valves(WASTE.PLUTONIUM) elseif mode == WASTE_MODE.MANUAL_POLONIUM then _set_waste_valves(WASTE.POLONIUM) elseif mode == WASTE_MODE.MANUAL_ANTI_MATTER then _set_waste_valves(WASTE.ANTI_MATTER) elseif mode > WASTE_MODE.MANUAL_ANTI_MATTER then log.debug(util.c("invalid waste mode setting ", mode)) end end -- set the automatic control max burn rate for this unit ---@param limit number burn rate limit for auto control function public.set_burn_limit(limit) if limit > 0 then self.db.control.lim_br100 = math.floor(limit * 100) if self.plc_i ~= nil then if limit > self.plc_i.get_struct().max_burn then self.db.control.lim_br100 = math.floor(self.plc_i.get_struct().max_burn * 100) end end end end --#endregion --#region Read States/Properties -- check if an alarm of at least a certain priority level is tripped ---@nodiscard ---@param min_prio ALARM_PRIORITY alarms with this priority or higher will be checked ---@return boolean tripped function public.has_alarm_min_prio(min_prio) for _, alarm in pairs(self.alarms) do if alarm.tier <= min_prio and (alarm.state == AISTATE.TRIPPED or alarm.state == AISTATE.ACKED) then return true end end return false end -- check if the reactor is connected, is stopped, the RPS is not tripped, and no alarms are active ---@nodiscard function public.is_safe_idle() -- can't be disconnected if self.plc_i == nil then return false end -- reactor must be stopped and RPS can't be tripped if self.plc_i.get_status().status or self.plc_i.get_db().rps_tripped then return false end -- alarms must be inactive and not tripping for _, alarm in pairs(self.alarms) do if not (alarm.state == AISTATE.INACTIVE or alarm.state == AISTATE.RING_BACK) then return false end end return true end -- check if emergency coolant activation has been tripped ---@nodiscard function public.is_emer_cool_tripped() return self.emcool_opened end -- get build properties of machines -- -- filter options -- - nil to include all builds -- - -1 to include only PLC build -- - RTU_UNIT_TYPE to include all builds of machines of that type ---@nodiscard ---@param filter -1|RTU_UNIT_TYPE? filter as described above function public.get_build(filter) local all = filter == nil local build = {} if all or (filter == -1) then if self.plc_i ~= nil then build.reactor = self.plc_i.get_struct() end end if all or (filter == RTU_UNIT_TYPE.BOILER_VALVE) then build.boilers = {} for i = 1, #self.boilers do local boiler = self.boilers[i] ---@type unit_session build.boilers[boiler.get_device_idx()] = { boiler.get_db().formed, boiler.get_db().build } end end if all or (filter == RTU_UNIT_TYPE.TURBINE_VALVE) then build.turbines = {} for i = 1, #self.turbines do local turbine = self.turbines[i] ---@type unit_session build.turbines[turbine.get_device_idx()] = { turbine.get_db().formed, turbine.get_db().build } end end if all or (filter == RTU_UNIT_TYPE.DYNAMIC_VALVE) then build.tanks = {} for i = 1, #self.tanks do local tank = self.tanks[i] ---@type unit_session build.tanks[tank.get_device_idx()] = { tank.get_db().formed, tank.get_db().build } end end return build end -- get reactor status ---@nodiscard function public.get_reactor_status() local status = {} if self.plc_i ~= nil then status = { self.plc_i.get_status(), self.plc_i.get_rps(), self.plc_i.get_general_status() } end return status end -- get the current burn rate (actual rate) ---@nodiscard function public.get_burn_rate() local rate = 0 if self.plc_i ~= nil then rate = self.plc_i.get_status().act_burn_rate end return rate or 0 end -- get RTU statuses ---@nodiscard function public.get_rtu_statuses() local status = {} -- status of boilers (including tanks) status.boilers = {} for i = 1, #self.boilers do local boiler = self.boilers[i] ---@type unit_session local db = boiler.get_db() ---@type boilerv_session_db status.boilers[boiler.get_device_idx()] = { boiler.is_faulted(), db.formed, db.state, db.tanks } end -- status of turbines (including tanks) status.turbines = {} for i = 1, #self.turbines do local turbine = self.turbines[i] ---@type unit_session local db = turbine.get_db() ---@type turbinev_session_db status.turbines[turbine.get_device_idx()] = { turbine.is_faulted(), db.formed, db.state, db.tanks } end -- status of dynamic tanks status.tanks = {} for i = 1, #self.tanks do local tank = self.tanks[i] ---@type unit_session local db = tank.get_db() ---@type dynamicv_session_db status.tanks[tank.get_device_idx()] = { tank.is_faulted(), db.formed, db.state, db.tanks } end -- SNA statistical information local total_peak, total_avail, total_out = 0, 0, 0 for i = 1, #self.snas do local db = self.snas[i].get_db() ---@type sna_session_db total_peak = total_peak + db.state.peak_production total_avail = total_avail + db.state.production_rate total_out = total_out + math.min(db.tanks.input.amount / 10, db.state.production_rate) end status.sna = { #self.snas, total_peak, total_avail, total_out } -- radiation monitors (environment detectors) status.envds = {} for i = 1, #self.envd do local envd = self.envd[i] ---@type unit_session local db = envd.get_db() ---@type envd_session_db status.envds[envd.get_device_idx()] = { envd.is_faulted(), db.radiation, db.radiation_raw } end return status end -- get the current total max production rate ---@nodiscard ---@return number total_avail_rate function public.get_sna_rate() local total_avail_rate = 0 for i = 1, #self.snas do local db = self.snas[i].get_db() ---@type sna_session_db total_avail_rate = total_avail_rate + db.state.production_rate end return total_avail_rate end -- get the annunciator status ---@nodiscard function public.get_annunciator() return self.db.annunciator end -- get the alarm states ---@nodiscard function public.get_alarms() return self.db.alarm_states end -- get information required for automatic reactor control ---@nodiscard function public.get_control_inf() return self.db.control end -- get unit state ---@nodiscard function public.get_state() return { self.status_text[1], self.status_text[2], self.db.control.ready, self.db.control.degraded, self.db.control.waste_mode, self.waste_product } end -- get valve states ---@nodiscard function public.get_valves() local v = self.valves return { v.waste_pu.check(), v.waste_sna.check(), v.waste_po.check(), v.waste_sps.check(), v.emer_cool.check() } end -- get the reactor ID ---@nodiscard function public.get_id() return self.r_id end --#endregion return public end return unit