cc-mek-scada/scada-common/rsio.lua

366 lines
13 KiB
Lua

--
-- Redstone I/O
--
local util = require("scada-common.util")
---@class rsio
local rsio = {}
--#region RS I/O Constants
---@enum IO_LVL I/O logic level
local IO_LVL = {
DISCONNECT = -1, -- use for RTU session to indicate this RTU is not connected to this port
LOW = 0,
HIGH = 1,
FLOATING = 2 -- use for RTU session to indicate this RTU is connected but not yet read
}
---@enum IO_DIR I/O direction
local IO_DIR = {
IN = 0,
OUT = 1
}
---@enum IO_MODE I/O mode (digital/analog input/output)
local IO_MODE = {
DIGITAL_IN = 0,
DIGITAL_OUT = 1,
ANALOG_IN = 2,
ANALOG_OUT = 3
}
---@enum IO_PORT redstone I/O logic port
local IO_PORT = {
-- digital inputs --
-- facility
F_SCRAM = 1, -- active low, facility-wide scram
F_ACK = 2, -- active high, facility alarm acknowledge
-- reactor
R_SCRAM = 3, -- active low, reactor scram
R_RESET = 4, -- active high, reactor RPS reset
R_ENABLE = 5, -- active high, reactor enable
-- unit
U_ACK = 6, -- active high, unit alarm acknowledge
-- digital outputs --
-- facility
F_ALARM = 7, -- active high, facility-wide alarm (any high priority unit alarm)
F_ALARM_ANY = 8, -- active high, any alarm regardless of priority
F_MATRIX_LOW = 27, -- active high, induction matrix charge less than
F_MATRIX_HIGH = 28, -- active high, induction matrix charge high
-- waste
WASTE_PU = 9, -- active low, waste -> plutonium -> pellets route
WASTE_PO = 10, -- active low, waste -> polonium route
WASTE_POPL = 11, -- active low, polonium -> pellets route
WASTE_AM = 12, -- active low, polonium -> anti-matter route
-- reactor
R_ACTIVE = 13, -- active high, reactor is active
R_AUTO_CTRL = 14, -- active high, reactor burn rate is automatic
R_SCRAMMED = 15, -- active high, reactor is scrammed
R_AUTO_SCRAM = 16, -- active high, reactor was automatically scrammed
R_HIGH_DMG = 17, -- active high, reactor damage is high
R_HIGH_TEMP = 18, -- active high, reactor is at a high temperature
R_LOW_COOLANT = 19, -- active high, reactor has very low coolant
R_EXCESS_HC = 20, -- active high, reactor has excess heated coolant
R_EXCESS_WS = 21, -- active high, reactor has excess waste
R_INSUFF_FUEL = 22, -- active high, reactor has insufficent fuel
R_PLC_FAULT = 23, -- active high, reactor PLC reports a device access fault
R_PLC_TIMEOUT = 24, -- active high, reactor PLC has not been heard from
-- unit outputs
U_ALARM = 25, -- active high, unit alarm
U_EMER_COOL = 26, -- active low, emergency coolant control
-- analog outputs --
-- facility
F_MATRIX_CHG = 29 -- analog charge level of the induction matrix
}
rsio.IO_LVL = IO_LVL
rsio.IO_DIR = IO_DIR
rsio.IO_MODE = IO_MODE
rsio.IO = IO_PORT
rsio.NUM_PORTS = 29
rsio.NUM_DIG_PORTS = 28
rsio.NUM_ANA_PORTS = 1
-- self checks
assert(rsio.NUM_PORTS == (rsio.NUM_DIG_PORTS + rsio.NUM_ANA_PORTS), "port counts inconsistent")
local dup_chk = {}
for _, v in pairs(IO_PORT) do
assert(dup_chk[v] ~= true, "duplicate in port list")
dup_chk[v] = true
end
assert(#dup_chk == rsio.NUM_PORTS, "port list malformed")
--#endregion
--#region Utility Functions and Attribute Tables
local IO = IO_PORT
-- list of all port names
local PORT_NAMES = {}
for k, v in pairs(IO) do PORT_NAMES[v] = k end
-- list of all port I/O modes
local MODES = {
[IO.F_SCRAM] = IO_MODE.DIGITAL_IN,
[IO.F_ACK] = IO_MODE.DIGITAL_IN,
[IO.R_SCRAM] = IO_MODE.DIGITAL_IN,
[IO.R_RESET] = IO_MODE.DIGITAL_IN,
[IO.R_ENABLE] = IO_MODE.DIGITAL_IN,
[IO.U_ACK] = IO_MODE.DIGITAL_IN,
[IO.F_ALARM] = IO_MODE.DIGITAL_OUT,
[IO.F_ALARM_ANY] = IO_MODE.DIGITAL_OUT,
[IO.F_MATRIX_LOW] = IO_MODE.DIGITAL_OUT,
[IO.F_MATRIX_HIGH] = IO_MODE.DIGITAL_OUT,
[IO.WASTE_PU] = IO_MODE.DIGITAL_OUT,
[IO.WASTE_PO] = IO_MODE.DIGITAL_OUT,
[IO.WASTE_POPL] = IO_MODE.DIGITAL_OUT,
[IO.WASTE_AM] = IO_MODE.DIGITAL_OUT,
[IO.R_ACTIVE] = IO_MODE.DIGITAL_OUT,
[IO.R_AUTO_CTRL] = IO_MODE.DIGITAL_OUT,
[IO.R_SCRAMMED] = IO_MODE.DIGITAL_OUT,
[IO.R_AUTO_SCRAM] = IO_MODE.DIGITAL_OUT,
[IO.R_HIGH_DMG] = IO_MODE.DIGITAL_OUT,
[IO.R_HIGH_TEMP] = IO_MODE.DIGITAL_OUT,
[IO.R_LOW_COOLANT] = IO_MODE.DIGITAL_OUT,
[IO.R_EXCESS_HC] = IO_MODE.DIGITAL_OUT,
[IO.R_EXCESS_WS] = IO_MODE.DIGITAL_OUT,
[IO.R_INSUFF_FUEL] = IO_MODE.DIGITAL_OUT,
[IO.R_PLC_FAULT] = IO_MODE.DIGITAL_OUT,
[IO.R_PLC_TIMEOUT] = IO_MODE.DIGITAL_OUT,
[IO.U_ALARM] = IO_MODE.DIGITAL_OUT,
[IO.U_EMER_COOL] = IO_MODE.DIGITAL_OUT,
[IO.F_MATRIX_CHG] = IO_MODE.ANALOG_OUT
}
assert(rsio.NUM_PORTS == #PORT_NAMES, "port names length incorrect")
assert(rsio.NUM_PORTS == #MODES, "modes length incorrect")
-- port to string
---@nodiscard
---@param port IO_PORT
function rsio.to_string(port)
if util.is_int(port) and port > 0 and port <= #PORT_NAMES then
return PORT_NAMES[port]
else
return "UNKNOWN"
end
end
local _B_AND = bit.band
local function _I_ACTIVE_HIGH(level) return level == IO_LVL.HIGH end
local function _I_ACTIVE_LOW(level) return level == IO_LVL.LOW end
local function _O_ACTIVE_HIGH(active) if active then return IO_LVL.HIGH else return IO_LVL.LOW end end
local function _O_ACTIVE_LOW(active) if active then return IO_LVL.LOW else return IO_LVL.HIGH end end
-- I/O mappings to I/O function and I/O mode
local RS_DIO_MAP = {
[IO.F_SCRAM] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.IN },
[IO.F_ACK] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.IN },
[IO.R_SCRAM] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.IN },
[IO.R_RESET] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.IN },
[IO.R_ENABLE] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.IN },
[IO.U_ACK] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.IN },
[IO.F_ALARM] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.F_ALARM_ANY] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.F_MATRIX_LOW] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.F_MATRIX_HIGH] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.WASTE_PU] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT },
[IO.WASTE_PO] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT },
[IO.WASTE_POPL] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT },
[IO.WASTE_AM] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT },
[IO.R_ACTIVE] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_AUTO_CTRL] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_SCRAMMED] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_AUTO_SCRAM] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_HIGH_DMG] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_HIGH_TEMP] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_LOW_COOLANT] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_EXCESS_HC] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_EXCESS_WS] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_INSUFF_FUEL] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_PLC_FAULT] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.R_PLC_TIMEOUT] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.U_ALARM] = { _in = _I_ACTIVE_HIGH, _out = _O_ACTIVE_HIGH, mode = IO_DIR.OUT },
[IO.U_EMER_COOL] = { _in = _I_ACTIVE_LOW, _out = _O_ACTIVE_LOW, mode = IO_DIR.OUT }
}
assert(rsio.NUM_DIG_PORTS == #RS_DIO_MAP, "RS_DIO_MAP length incorrect")
-- get the I/O direction of a port
---@nodiscard
---@param port IO_PORT
---@return IO_DIR
function rsio.get_io_dir(port)
if rsio.is_valid_port(port) then
return util.trinary(MODES[port] == IO_MODE.DIGITAL_OUT or MODES[port] == IO_MODE.ANALOG_OUT, IO_DIR.OUT, IO_DIR.IN)
else return IO_DIR.IN end
end
-- get the mode of a port
---@nodiscard
---@param port IO_PORT
---@return IO_MODE
function rsio.get_io_mode(port)
if rsio.is_valid_port(port) then return MODES[port]
else return IO_MODE.ANALOG_IN end
end
--#endregion
--#region Generic Checks
local RS_SIDES = rs.getSides()
-- check if a port is valid
---@nodiscard
---@param port IO_PORT
---@return boolean valid
function rsio.is_valid_port(port)
return util.is_int(port) and port > 0 and port <= rsio.NUM_PORTS
end
-- check if a side is valid
---@nodiscard
---@param side string
---@return boolean valid
function rsio.is_valid_side(side)
if side ~= nil then
for i = 0, #RS_SIDES do
if RS_SIDES[i] == side then return true end
end
end
return false
end
-- check if a color is a valid single color
---@nodiscard
---@param color any
---@return boolean valid
function rsio.is_color(color)
return util.is_int(color) and (color > 0) and (_B_AND(color, (color - 1)) == 0)
end
-- color to string
---@nodiscard
---@param color color
---@return string
function rsio.color_name(color)
local color_name_map = { [colors.red] = "red", [colors.orange] = "orange", [colors.yellow] = "yellow", [colors.lime] = "lime", [colors.green] = "green", [colors.cyan] = "cyan", [colors.lightBlue] = "lightBlue", [colors.blue] = "blue", [colors.purple] = "purple", [colors.magenta] = "magenta", [colors.pink] = "pink", [colors.white] = "white", [colors.lightGray] = "lightGray", [colors.gray] = "gray", [colors.black] = "black", [colors.brown] = "brown" }
if rsio.is_color(color) then
return color_name_map[color]
else return "unknown" end
end
--#endregion
--#region Digital I/O
-- check if a port is digital
---@nodiscard
---@param port IO_PORT
function rsio.is_digital(port)
return rsio.is_valid_port(port) and (MODES[port] == IO_MODE.DIGITAL_IN or MODES[port] == IO_MODE.DIGITAL_OUT)
end
-- get digital I/O level reading from a redstone boolean input value
---@nodiscard
---@param rs_value boolean raw value from redstone
---@return IO_LVL
function rsio.digital_read(rs_value)
if rs_value then return IO_LVL.HIGH else return IO_LVL.LOW end
end
-- get redstone boolean output value corresponding to a digital I/O level
---@nodiscard
---@param level IO_LVL logic level
---@return boolean
function rsio.digital_write(level) return level == IO_LVL.HIGH end
-- returns the level corresponding to active
---@nodiscard
---@param port IO_PORT port (to determine active high/low)
---@param active boolean state to convert to logic level
---@return IO_LVL|false
function rsio.digital_write_active(port, active)
if not rsio.is_digital(port) then
return false
else
return RS_DIO_MAP[port]._out(active)
end
end
-- returns true if the level corresponds to active
---@nodiscard
---@param port IO_PORT port (to determine active low/high)
---@param level IO_LVL logic level
---@return boolean|nil state true for active, false for inactive, or nil if invalid port or level provided
function rsio.digital_is_active(port, level)
if (not rsio.is_digital(port)) or level == IO_LVL.FLOATING or level == IO_LVL.DISCONNECT then
return nil
else
return RS_DIO_MAP[port]._in(level)
end
end
--#endregion
--#region Analog I/O
-- check if a port is analog
---@nodiscard
---@param port IO_PORT
function rsio.is_analog(port)
return rsio.is_valid_port(port) and (MODES[port] == IO_MODE.ANALOG_IN or MODES[port] == IO_MODE.ANALOG_OUT)
end
-- read an analog value scaled from min to max
---@nodiscard
---@param rs_value number redstone reading (0 to 15)
---@param min number minimum of range
---@param max number maximum of range
---@return number value scaled reading (min to max)
function rsio.analog_read(rs_value, min, max)
local value = rs_value / 15
return (value * (max - min)) + min
end
-- write an analog value from the provided scale range
---@nodiscard
---@param value number value to write (from min to max range)
---@param min number minimum of range
---@param max number maximum of range
---@return integer rs_value scaled redstone reading (0 to 15)
function rsio.analog_write(value, min, max)
local scaled_value = (value - min) / (max - min)
return math.floor(scaled_value * 15)
end
--#endregion
return rsio