cc-mek-scada/supervisor/unit.lua

937 lines
32 KiB
Lua

local log = require("scada-common.log")
local rsio = require("scada-common.rsio")
local types = require("scada-common.types")
local util = require("scada-common.util")
local logic = require("supervisor.unitlogic")
local plc = require("supervisor.session.plc")
local rsctl = require("supervisor.session.rsctl")
---@class reactor_control_unit
local unit = {}
local WASTE_MODE = types.WASTE_MODE
local WASTE = types.WASTE_PRODUCT
local ALARM = types.ALARM
local PRIO = types.ALARM_PRIORITY
local ALARM_STATE = types.ALARM_STATE
local TRI_FAIL = types.TRI_FAIL
local RTU_UNIT_TYPE = types.RTU_UNIT_TYPE
local PLC_S_CMDS = plc.PLC_S_CMDS
local IO = rsio.IO
local DT_KEYS = {
ReactorBurnR = "RBR",
ReactorTemp = "RTP",
ReactorFuel = "RFL",
ReactorWaste = "RWS",
ReactorCCool = "RCC",
ReactorHCool = "RHC",
BoilerWater = "BWR",
BoilerSteam = "BST",
BoilerCCool = "BCC",
BoilerHCool = "BHC",
TurbineSteam = "TST",
TurbinePower = "TPR"
}
---@enum ALARM_INT_STATE
local AISTATE = {
INACTIVE = 1,
TRIPPING = 2,
TRIPPED = 3,
ACKED = 4,
RING_BACK = 5,
RING_BACK_TRIPPING = 6
}
---@class alarm_def
---@field state ALARM_INT_STATE internal alarm state
---@field trip_time integer time (ms) when first tripped
---@field hold_time integer time (s) to hold before tripping
---@field id ALARM alarm ID
---@field tier integer alarm urgency tier (0 = highest)
-- create a new reactor unit
---@nodiscard
---@param reactor_id integer reactor unit number
---@param num_boilers integer number of boilers expected
---@param num_turbines integer number of turbines expected
function unit.new(reactor_id, num_boilers, num_turbines)
---@class _unit_self
local self = {
r_id = reactor_id,
plc_s = nil, ---@class plc_session_struct
plc_i = nil, ---@class plc_session
num_boilers = num_boilers,
num_turbines = num_turbines,
types = { DT_KEYS = DT_KEYS, AISTATE = AISTATE },
-- rtus
rtu_list = {},
redstone = {},
boilers = {},
turbines = {},
tanks = {},
snas = {},
envd = {},
sna_prod_rate = 0,
-- redstone control
io_ctl = nil, ---@type rs_controller
valves = {}, ---@type unit_valves
emcool_opened = false,
-- auto control
auto_engaged = false,
auto_was_alarmed = false,
ramp_target_br100 = 0,
-- state tracking
deltas = {},
last_heartbeat = 0,
last_radiation = 0,
damage_decreasing = false,
damage_initial = 0,
damage_start = 0,
damage_last = 0,
damage_est_last = 0,
waste_product = WASTE.PLUTONIUM, ---@type WASTE_PRODUCT
status_text = { "UNKNOWN", "awaiting connection..." },
-- logic for alarms
had_reactor = false,
last_rate_change_ms = 0,
---@type rps_status
last_rps_trips = {
high_dmg = false,
high_temp = false,
low_cool = false,
ex_waste = false,
ex_hcool = false,
no_fuel = false,
fault = false,
timeout = false,
manual = false,
automatic = false,
sys_fail = false,
force_dis = false
},
plc_cache = {
active = false,
ok = false,
rps_trip = false,
---@type rps_status
rps_status = {
high_dmg = false,
high_temp = false,
low_cool = false,
ex_waste = false,
ex_hcool = false,
no_fuel = false,
fault = false,
timeout = false,
manual = false,
automatic = false,
sys_fail = false,
force_dis = false
},
damage = 0,
temp = 0,
waste = 0
},
---@class alarm_monitors
alarms = {
-- reactor lost under the condition of meltdown imminent
ContainmentBreach = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ContainmentBreach, tier = PRIO.CRITICAL },
-- radiation monitor alarm for this unit
ContainmentRadiation = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ContainmentRadiation, tier = PRIO.CRITICAL },
-- reactor offline after being online
ReactorLost = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ReactorLost, tier = PRIO.TIMELY },
-- damage >100%
CriticalDamage = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.CriticalDamage, tier = PRIO.CRITICAL },
-- reactor damage increasing
ReactorDamage = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ReactorDamage, tier = PRIO.EMERGENCY },
-- reactor >1200K
ReactorOverTemp = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ReactorOverTemp, tier = PRIO.URGENT },
-- reactor >=1150K
ReactorHighTemp = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 1, id = ALARM.ReactorHighTemp, tier = PRIO.TIMELY },
-- waste = 100%
ReactorWasteLeak = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 0, id = ALARM.ReactorWasteLeak, tier = PRIO.EMERGENCY },
-- waste >85%
ReactorHighWaste = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 2, id = ALARM.ReactorHighWaste, tier = PRIO.URGENT },
-- RPS trip occured
RPSTransient = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 2, id = ALARM.RPSTransient, tier = PRIO.TIMELY },
-- CoolantLevelLow, WaterLevelLow, TurbineOverSpeed, MaxWaterReturnFeed, RCPTrip, RCSFlowLow, BoilRateMismatch, CoolantFeedMismatch,
-- SteamFeedMismatch, MaxWaterReturnFeed, RCS hardware fault
RCSTransient = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 5, id = ALARM.RCSTransient, tier = PRIO.TIMELY },
-- "It's just a routine turbin' trip!" -Bill Gibson, "The China Syndrome"
TurbineTrip = { state = AISTATE.INACTIVE, trip_time = 0, hold_time = 2, id = ALARM.TurbineTrip, tier = PRIO.URGENT }
},
---@class unit_db
db = {
---@class annunciator
annunciator = {
-- reactor
PLCOnline = false,
PLCHeartbeat = false, -- alternate true/false to blink, each time there is a keep_alive
RadiationMonitor = 1,
AutoControl = false,
ReactorSCRAM = false,
ManualReactorSCRAM = false,
AutoReactorSCRAM = false,
RadiationWarning = false,
RCPTrip = false,
RCSFlowLow = false,
CoolantLevelLow = false,
ReactorTempHigh = false,
ReactorHighDeltaT = false,
FuelInputRateLow = false,
WasteLineOcclusion = false,
HighStartupRate = false,
-- cooling
RCSFault = false,
EmergencyCoolant = 1,
CoolantFeedMismatch = false,
BoilRateMismatch = false,
SteamFeedMismatch = false,
MaxWaterReturnFeed = false,
-- boilers
BoilerOnline = {},
HeatingRateLow = {},
WaterLevelLow = {},
-- turbines
TurbineOnline = {},
SteamDumpOpen = {},
TurbineOverSpeed = {},
GeneratorTrip = {},
TurbineTrip = {}
},
---@class alarms
alarm_states = {
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE,
ALARM_STATE.INACTIVE
},
-- fields for facility control
---@class unit_control
control = {
ready = false,
degraded = false,
blade_count = 0,
br100 = 0,
lim_br100 = 0,
waste_mode = WASTE_MODE.AUTO ---@type WASTE_MODE
}
}
}
-- list for RTU session management
self.rtu_list = { self.redstone, self.boilers, self.turbines, self.tanks, self.snas, self.envd }
-- init redstone RTU I/O controller
self.io_ctl = rsctl.new(self.redstone)
-- init boiler table fields
for _ = 1, num_boilers do
table.insert(self.db.annunciator.BoilerOnline, false)
table.insert(self.db.annunciator.HeatingRateLow, false)
end
-- init turbine table fields
for _ = 1, num_turbines do
table.insert(self.db.annunciator.TurbineOnline, false)
table.insert(self.db.annunciator.SteamDumpOpen, TRI_FAIL.OK)
table.insert(self.db.annunciator.TurbineOverSpeed, false)
table.insert(self.db.annunciator.GeneratorTrip, false)
table.insert(self.db.annunciator.TurbineTrip, false)
end
-- PRIVATE FUNCTIONS --
--#region time derivative utility functions
-- compute a change with respect to time of the given value
---@param key string value key
---@param value number value
---@param time number timestamp for value
local function _compute_dt(key, value, time)
if self.deltas[key] then
local data = self.deltas[key]
if time > data.last_t then
data.dt = (value - data.last_v) / (time - data.last_t)
data.last_v = value
data.last_t = time
end
else
self.deltas[key] = {
last_t = time,
last_v = value,
dt = 0.0
}
end
end
-- clear a delta
---@param key string value key
local function _reset_dt(key) self.deltas[key] = nil end
-- get the delta t of a value
---@nodiscard
---@param key string value key
---@return number value value or 0 if not known
function self._get_dt(key) if self.deltas[key] then return self.deltas[key].dt else return 0.0 end end
-- update all delta computations
local function _dt__compute_all()
if self.plc_i ~= nil then
local plc_db = self.plc_i.get_db()
local last_update_s = plc_db.last_status_update / 1000.0
_compute_dt(DT_KEYS.ReactorBurnR, plc_db.mek_status.act_burn_rate, last_update_s)
_compute_dt(DT_KEYS.ReactorTemp, plc_db.mek_status.temp, last_update_s)
_compute_dt(DT_KEYS.ReactorFuel, plc_db.mek_status.fuel, last_update_s)
_compute_dt(DT_KEYS.ReactorWaste, plc_db.mek_status.waste, last_update_s)
_compute_dt(DT_KEYS.ReactorCCool, plc_db.mek_status.ccool_amnt, last_update_s)
_compute_dt(DT_KEYS.ReactorHCool, plc_db.mek_status.hcool_amnt, last_update_s)
end
for i = 1, #self.boilers do
local boiler = self.boilers[i] ---@type unit_session
local db = boiler.get_db() ---@type boilerv_session_db
local last_update_s = db.tanks.last_update / 1000.0
_compute_dt(DT_KEYS.BoilerWater .. boiler.get_device_idx(), db.tanks.water.amount, last_update_s)
_compute_dt(DT_KEYS.BoilerSteam .. boiler.get_device_idx(), db.tanks.steam.amount, last_update_s)
_compute_dt(DT_KEYS.BoilerCCool .. boiler.get_device_idx(), db.tanks.ccool.amount, last_update_s)
_compute_dt(DT_KEYS.BoilerHCool .. boiler.get_device_idx(), db.tanks.hcool.amount, last_update_s)
end
for i = 1, #self.turbines do
local turbine = self.turbines[i] ---@type unit_session
local db = turbine.get_db() ---@type turbinev_session_db
local last_update_s = db.tanks.last_update / 1000.0
_compute_dt(DT_KEYS.TurbineSteam .. turbine.get_device_idx(), db.tanks.steam.amount, last_update_s)
_compute_dt(DT_KEYS.TurbinePower .. turbine.get_device_idx(), db.tanks.energy, last_update_s)
end
end
--#endregion
--#region redstone I/O
-- create a generic valve interface
---@nodiscard
---@param port IO_PORT
local function _make_valve_iface(port)
---@class unit_valve_iface
local iface = {
open = function () self.io_ctl.digital_write(port, true) end,
close = function () self.io_ctl.digital_write(port, false) end,
-- check valve state
---@nodiscard
---@return 0|1|2 0 for not connected, 1 for inactive, 2 for active
check = function () return util.trinary(self.io_ctl.is_connected(port), util.trinary(self.io_ctl.digital_read(port), 2, 1), 0) end
}
return iface
end
-- valves
local waste_pu = _make_valve_iface(IO.WASTE_PU)
local waste_sna = _make_valve_iface(IO.WASTE_PO)
local waste_po = _make_valve_iface(IO.WASTE_POPL)
local waste_sps = _make_valve_iface(IO.WASTE_AM)
local emer_cool = _make_valve_iface(IO.U_EMER_COOL)
---@class unit_valves
self.valves = {
waste_pu = waste_pu,
waste_sna = waste_sna,
waste_po = waste_po,
waste_sps = waste_sps,
emer_cool = emer_cool
}
-- route reactor waste for a given waste product
---@param product WASTE_PRODUCT waste product to route valves for
local function _set_waste_valves(product)
self.waste_product = product
if product == WASTE.PLUTONIUM then
-- route through plutonium generation
waste_pu.open()
waste_sna.close()
waste_po.close()
waste_sps.close()
elseif product == WASTE.POLONIUM then
-- route through polonium generation into pellets
waste_pu.close()
waste_sna.open()
waste_po.open()
waste_sps.close()
elseif product == WASTE.ANTI_MATTER then
-- route through polonium generation into SPS
waste_pu.close()
waste_sna.open()
waste_po.close()
waste_sps.open()
end
end
--#endregion
-- PUBLIC FUNCTIONS --
---@class reactor_unit
local public = {}
-- ADD/LINK DEVICES --
--#region
-- link the PLC
---@param plc_session plc_session_struct
function public.link_plc_session(plc_session)
self.had_reactor = true
self.plc_s = plc_session
self.plc_i = plc_session.instance
-- reset deltas
_reset_dt(DT_KEYS.ReactorTemp)
_reset_dt(DT_KEYS.ReactorFuel)
_reset_dt(DT_KEYS.ReactorWaste)
_reset_dt(DT_KEYS.ReactorCCool)
_reset_dt(DT_KEYS.ReactorHCool)
end
-- link a redstone RTU session
---@param rs_unit unit_session
function public.add_redstone(rs_unit)
table.insert(self.redstone, rs_unit)
-- send or re-send waste settings
_set_waste_valves(self.waste_product)
end
-- link a turbine RTU session
---@param turbine unit_session
---@return boolean linked turbine accepted to associated device slot
function public.add_turbine(turbine)
if #self.turbines < num_turbines and turbine.get_device_idx() <= num_turbines then
table.insert(self.turbines, turbine)
-- reset deltas
_reset_dt(DT_KEYS.TurbineSteam .. turbine.get_device_idx())
_reset_dt(DT_KEYS.TurbinePower .. turbine.get_device_idx())
return true
else return false end
end
-- link a boiler RTU session
---@param boiler unit_session
---@return boolean linked boiler accepted to associated device slot
function public.add_boiler(boiler)
if #self.boilers < num_boilers and boiler.get_device_idx() <= num_boilers then
table.insert(self.boilers, boiler)
-- reset deltas
_reset_dt(DT_KEYS.BoilerWater .. boiler.get_device_idx())
_reset_dt(DT_KEYS.BoilerSteam .. boiler.get_device_idx())
_reset_dt(DT_KEYS.BoilerCCool .. boiler.get_device_idx())
_reset_dt(DT_KEYS.BoilerHCool .. boiler.get_device_idx())
return true
else return false end
end
-- link a dynamic tank RTU session
---@param dynamic_tank unit_session
---@return boolean linked dynamic tank accepted (max 1)
function public.add_tank(dynamic_tank)
if #self.tanks == 0 then
table.insert(self.tanks, dynamic_tank)
return true
else return false end
end
-- link a solar neutron activator RTU session
---@param sna unit_session
function public.add_sna(sna) table.insert(self.snas, sna) end
-- link an environment detector RTU session
---@param envd unit_session
---@return boolean linked environment detector accepted (max 1)
function public.add_envd(envd)
if #self.envd == 0 then
table.insert(self.envd, envd)
return true
else return false end
end
-- purge devices associated with the given RTU session ID
---@param session integer RTU session ID
function public.purge_rtu_devices(session)
for _, v in pairs(self.rtu_list) do util.filter_table(v, function (s) return s.get_session_id() ~= session end) end
end
--#endregion
-- UPDATE SESSION --
-- update (iterate) this unit
function public.update()
-- unlink PLC if session was closed
if self.plc_s ~= nil and not self.plc_s.open then
self.plc_s = nil
self.plc_i = nil
self.db.control.br100 = 0
self.db.control.lim_br100 = 0
end
-- unlink RTU unit sessions if they are closed
for _, v in pairs(self.rtu_list) do util.filter_table(v, function (u) return u.is_connected() end) end
-- update degraded state for auto control
self.db.control.degraded = (#self.boilers ~= num_boilers) or (#self.turbines ~= num_turbines) or (self.plc_i == nil)
-- check boilers formed/faulted
for i = 1, #self.boilers do
local sess = self.boilers[i] ---@type unit_session
local boiler = sess.get_db() ---@type boilerv_session_db
if sess.is_faulted() or not boiler.formed then
self.db.control.degraded = true
end
end
-- check turbines formed/faulted
for i = 1, #self.turbines do
local sess = self.turbines[i] ---@type unit_session
local turbine = sess.get_db() ---@type turbinev_session_db
if sess.is_faulted() or not turbine.formed then
self.db.control.degraded = true
end
end
-- check plc formed/faulted
if self.plc_i ~= nil then
local rps = self.plc_i.get_rps()
if rps.fault or rps.sys_fail then
self.db.control.degraded = true
end
end
-- update deltas
_dt__compute_all()
-- update annunciator logic
logic.update_annunciator(self)
-- update alarm status
logic.update_alarms(self)
-- if in auto mode, SCRAM on certain alarms
logic.update_auto_safety(public, self)
-- update status text
logic.update_status_text(self)
-- handle redstone I/O
if #self.redstone > 0 then
logic.handle_redstone(self)
elseif not self.plc_cache.rps_trip then
self.emcool_opened = false
end
end
-- AUTO CONTROL OPERATIONS --
--#region
-- engage automatic control
function public.auto_engage()
self.auto_engaged = true
if self.plc_i ~= nil then
self.plc_i.auto_lock(true)
end
end
-- disengage automatic control
function public.auto_disengage()
self.auto_engaged = false
if self.plc_i ~= nil then
self.plc_i.auto_lock(false)
self.db.control.br100 = 0
end
end
-- get the actual limit of this unit<br>
-- if it is degraded or not ready, the limit will be 0
---@nodiscard
---@return integer lim_br100
function public.auto_get_effective_limit()
if (not self.db.control.ready) or self.db.control.degraded or self.plc_cache.rps_trip then
self.db.control.br100 = 0
return 0
else
return self.db.control.lim_br100
end
end
-- set the automatic burn rate based on the last set burn rate in 100ths
---@param ramp boolean true to ramp to rate, false to set right away
function public.auto_commit_br100(ramp)
if self.auto_engaged then
if self.plc_i ~= nil then
self.plc_i.auto_set_burn(self.db.control.br100 / 100, ramp)
if ramp then self.ramp_target_br100 = self.db.control.br100 end
end
end
end
-- check if ramping is complete (burn rate is same as target)
---@nodiscard
---@return boolean complete
function public.auto_ramp_complete()
if self.plc_i ~= nil then
return self.plc_i.is_ramp_complete() or
(self.plc_i.get_status().act_burn_rate == 0 and self.db.control.br100 == 0) or
public.auto_get_effective_limit() == 0
else return true end
end
-- perform an automatic SCRAM
function public.auto_scram()
if self.plc_s ~= nil then
self.db.control.br100 = 0
self.plc_s.in_queue.push_command(PLC_S_CMDS.ASCRAM)
end
end
-- queue a command to clear timeout/auto-scram if set
function public.auto_cond_rps_reset()
if self.plc_s ~= nil and self.plc_i ~= nil and (not self.auto_was_alarmed) and (not self.emcool_opened) then
local rps = self.plc_i.get_rps()
if rps.timeout or rps.automatic then
self.plc_i.auto_lock(true) -- if it timed out/restarted, auto lock was lost, so re-lock it
self.plc_s.in_queue.push_command(PLC_S_CMDS.RPS_AUTO_RESET)
end
end
end
-- set automatic waste product if mode is set to auto
---@param product WASTE_PRODUCT waste product to generate
function public.auto_set_waste(product)
if self.db.control.waste_mode == WASTE_MODE.AUTO then
self.waste_product = product
_set_waste_valves(product)
end
end
--#endregion
-- OPERATIONS --
--#region
-- queue a command to disable the reactor
function public.disable()
if self.plc_s ~= nil then
self.plc_s.in_queue.push_command(PLC_S_CMDS.DISABLE)
end
end
-- queue a command to SCRAM the reactor
function public.scram()
if self.plc_s ~= nil then
self.plc_s.in_queue.push_command(PLC_S_CMDS.SCRAM)
end
end
-- queue a SCRAM command only if a manual SCRAM has not already occured
function public.cond_scram()
if self.plc_s ~= nil and not self.plc_cache.rps_status.manual then
self.plc_s.in_queue.push_command(PLC_S_CMDS.SCRAM)
end
end
-- acknowledge all alarms (if possible)
function public.ack_all()
for i = 1, #self.db.alarm_states do
if self.db.alarm_states[i] == ALARM_STATE.TRIPPED then
self.db.alarm_states[i] = ALARM_STATE.ACKED
end
end
end
-- acknowledge an alarm (if possible)
---@param id ALARM alarm ID
function public.ack_alarm(id)
if type(id) == "number" and self.db.alarm_states[id] == ALARM_STATE.TRIPPED then
self.db.alarm_states[id] = ALARM_STATE.ACKED
end
end
-- reset an alarm (if possible)
---@param id ALARM alarm ID
function public.reset_alarm(id)
if type(id) == "number" and self.db.alarm_states[id] == ALARM_STATE.RING_BACK then
self.db.alarm_states[id] = ALARM_STATE.INACTIVE
end
end
-- set waste processing mode
---@param mode WASTE_MODE processing mode
function public.set_waste_mode(mode)
self.db.control.waste_mode = mode
if mode == WASTE_MODE.MANUAL_PLUTONIUM then
_set_waste_valves(WASTE.PLUTONIUM)
elseif mode == WASTE_MODE.MANUAL_POLONIUM then
_set_waste_valves(WASTE.POLONIUM)
elseif mode == WASTE_MODE.MANUAL_ANTI_MATTER then
_set_waste_valves(WASTE.ANTI_MATTER)
elseif mode > WASTE_MODE.MANUAL_ANTI_MATTER then
log.debug(util.c("invalid waste mode setting ", mode))
end
end
-- set the automatic control max burn rate for this unit
---@param limit number burn rate limit for auto control
function public.set_burn_limit(limit)
if limit > 0 then
self.db.control.lim_br100 = math.floor(limit * 100)
if self.plc_i ~= nil then
if limit > self.plc_i.get_struct().max_burn then
self.db.control.lim_br100 = math.floor(self.plc_i.get_struct().max_burn * 100)
end
end
end
end
--#endregion
-- READ STATES/PROPERTIES --
--#region
-- check if an alarm of at least a certain priority level is tripped
---@nodiscard
---@param min_prio ALARM_PRIORITY alarms with this priority or higher will be checked
---@return boolean tripped
function public.has_alarm_min_prio(min_prio)
for _, alarm in pairs(self.alarms) do
if alarm.tier <= min_prio and (alarm.state == AISTATE.TRIPPED or alarm.state == AISTATE.ACKED) then
return true
end
end
return false
end
-- check if the reactor is connected, is stopped, the RPS is not tripped, and no alarms are active
---@nodiscard
function public.is_safe_idle()
-- can't be disconnected
if self.plc_i == nil then return false end
-- reactor must be stopped and RPS can't be tripped
if self.plc_i.get_status().status or self.plc_i.get_db().rps_tripped then return false end
-- alarms must be inactive and not tripping
for _, alarm in pairs(self.alarms) do
if not (alarm.state == AISTATE.INACTIVE or alarm.state == AISTATE.RING_BACK) then return false end
end
return true
end
-- check if emergency coolant activation has been tripped
---@nodiscard
function public.is_emer_cool_tripped() return self.emcool_opened end
-- get build properties of machines
--
-- filter options
-- - nil to include all builds
-- - -1 to include only PLC build
-- - RTU_UNIT_TYPE to include all builds of machines of that type
---@nodiscard
---@param filter -1|RTU_UNIT_TYPE? filter as described above
function public.get_build(filter)
local all = filter == nil
local build = {}
if all or (filter == -1) then
if self.plc_i ~= nil then
build.reactor = self.plc_i.get_struct()
end
end
if all or (filter == RTU_UNIT_TYPE.BOILER_VALVE) then
build.boilers = {}
for i = 1, #self.boilers do
local boiler = self.boilers[i] ---@type unit_session
build.boilers[boiler.get_device_idx()] = { boiler.get_db().formed, boiler.get_db().build }
end
end
if all or (filter == RTU_UNIT_TYPE.TURBINE_VALVE) then
build.turbines = {}
for i = 1, #self.turbines do
local turbine = self.turbines[i] ---@type unit_session
build.turbines[turbine.get_device_idx()] = { turbine.get_db().formed, turbine.get_db().build }
end
end
if all or (filter == RTU_UNIT_TYPE.DYNAMIC_VALVE) then
build.tanks = {}
for i = 1, #self.tanks do
local tank = self.tanks[i] ---@type unit_session
build.tanks[tank.get_device_idx()] = { tank.get_db().formed, tank.get_db().build }
end
end
return build
end
-- get reactor status
---@nodiscard
function public.get_reactor_status()
local status = {}
if self.plc_i ~= nil then
status = { self.plc_i.get_status(), self.plc_i.get_rps(), self.plc_i.get_general_status() }
end
return status
end
-- get the current burn rate (actual rate)
---@nodiscard
function public.get_burn_rate()
local rate = 0
if self.plc_i ~= nil then rate = self.plc_i.get_status().act_burn_rate end
return rate or 0
end
-- get RTU statuses
---@nodiscard
function public.get_rtu_statuses()
local status = {}
-- status of boilers (including tanks)
status.boilers = {}
for i = 1, #self.boilers do
local boiler = self.boilers[i] ---@type unit_session
local db = boiler.get_db() ---@type boilerv_session_db
status.boilers[boiler.get_device_idx()] = { boiler.is_faulted(), db.formed, db.state, db.tanks }
end
-- status of turbines (including tanks)
status.turbines = {}
for i = 1, #self.turbines do
local turbine = self.turbines[i] ---@type unit_session
local db = turbine.get_db() ---@type turbinev_session_db
status.turbines[turbine.get_device_idx()] = { turbine.is_faulted(), db.formed, db.state, db.tanks }
end
-- status of dynamic tanks
status.tanks = {}
for i = 1, #self.tanks do
local tank = self.tanks[i] ---@type unit_session
local db = tank.get_db() ---@type dynamicv_session_db
status.tanks[tank.get_device_idx()] = { tank.is_faulted(), db.formed, db.state, db.tanks }
end
-- basic SNA statistical information
local total_peak = 0
for i = 1, #self.snas do
local db = self.snas[i].get_db() ---@type sna_session_db
total_peak = total_peak + db.state.peak_production
end
status.sna = { #self.snas, public.get_sna_rate(), total_peak }
-- radiation monitors (environment detectors)
status.rad_mon = {}
for i = 1, #self.envd do
local envd = self.envd[i] ---@type unit_session
status.rad_mon[envd.get_device_idx()] = { envd.is_faulted(), envd.get_db().radiation }
end
return status
end
-- get the current total [max] production rate is
---@nodiscard
---@return number total_avail_rate
function public.get_sna_rate()
local total_avail_rate = 0
for i = 1, #self.snas do
local db = self.snas[i].get_db() ---@type sna_session_db
total_avail_rate = total_avail_rate + db.state.production_rate
end
return total_avail_rate
end
-- get the annunciator status
---@nodiscard
function public.get_annunciator() return self.db.annunciator end
-- get the alarm states
---@nodiscard
function public.get_alarms() return self.db.alarm_states end
-- get information required for automatic reactor control
---@nodiscard
function public.get_control_inf() return self.db.control end
-- get unit state
---@nodiscard
function public.get_state()
return {
self.status_text[1],
self.status_text[2],
self.db.control.ready,
self.db.control.degraded,
self.db.control.waste_mode,
self.waste_product
}
end
-- get valve states
---@nodiscard
function public.get_valves()
local v = self.valves
return {
v.waste_pu.check(),
v.waste_sna.check(),
v.waste_po.check(),
v.waste_sps.check(),
v.emer_cool.check()
}
end
-- get the reactor ID
---@nodiscard
function public.get_id() return self.r_id end
--#endregion
return public
end
return unit