retry if ws send new_doc_user message failed

This commit is contained in:
appflowy 2021-10-03 14:05:15 +08:00
parent c0e126c550
commit d7300dd7e2
14 changed files with 446 additions and 27 deletions

View File

@ -80,8 +80,8 @@ impl DocWsActor {
}
}
async fn handle_new_doc_user(&self, socket: Socket, data: Vec<u8>) -> DocResult<()> {
let user = spawn_blocking(move || {
async fn handle_new_doc_user(&self, _socket: Socket, data: Vec<u8>) -> DocResult<()> {
let _user = spawn_blocking(move || {
let user: NewDocUser = parse_from_bytes(&data)?;
DocResult::Ok(user)
})

View File

@ -2,7 +2,7 @@ use crate::{
entities::doc::{RevId, Revision, RevisionRange},
errors::{internal_error, DocError, DocResult},
services::doc::revision::{util::RevisionOperation, DocRevision, RevisionServer},
sql_tables::{DocTableSql, RevState, RevTableSql},
sql_tables::{RevState, RevTableSql},
};
use async_stream::stream;
use dashmap::DashMap;

View File

@ -1,19 +1,19 @@
use crate::{
entities::doc::{RevType, Revision, RevisionRange},
errors::DocError,
entities::doc::{RevId, RevType, Revision, RevisionRange},
errors::{DocError, DocResult},
services::{
doc::revision::actor::{RevisionCmd, RevisionStoreActor},
doc::revision::{
actor::{RevisionCmd, RevisionStoreActor},
util::NotifyOpenDocAction,
},
util::RevIdCounter,
ws::WsDocumentSender,
},
};
use crate::{
entities::doc::{NewDocUser, RevId},
errors::DocResult,
use flowy_infra::{
future::ResultFuture,
retry::{ExponentialBackoff, Retry},
};
use flowy_database::ConnectionPool;
use flowy_infra::future::ResultFuture;
use flowy_ot::core::Delta;
use parking_lot::RwLock;
use std::{collections::VecDeque, sync::Arc};
@ -112,15 +112,17 @@ impl RevisionManager {
}
}
// FIXME:
// user_id may be invalid if the user switch to another account while
// theNotifyOpenDocAction is flying
fn notify_open_doc(ws: &Arc<dyn WsDocumentSender>, user_id: &str, doc_id: &str, rev_id: &RevId) {
let new_doc_user = NewDocUser {
user_id: user_id.to_string(),
rev_id: rev_id.clone().into(),
doc_id: doc_id.to_string(),
};
match ws.send(new_doc_user.into()) {
Ok(_) => {},
Err(e) => log::error!("Send new_doc_user failed: {:?}", e),
}
let action = NotifyOpenDocAction::new(user_id, doc_id, rev_id, ws);
let strategy = ExponentialBackoff::from_millis(50).take(3);
let retry = Retry::spawn(strategy, action);
tokio::spawn(async move {
match retry.await {
Ok(_) => {},
Err(e) => log::error!("Notify open doc failed: {}", e),
}
});
}

View File

@ -1,4 +1,12 @@
use crate::{entities::doc::Revision, errors::DocResult, sql_tables::RevState};
use crate::{
entities::doc::{NewDocUser, RevId, Revision},
errors::{DocError, DocResult},
services::ws::WsDocumentSender,
sql_tables::RevState,
};
use flowy_infra::retry::Action;
use futures::future::BoxFuture;
use std::{future, sync::Arc};
use tokio::sync::oneshot;
pub type Sender = oneshot::Sender<DocResult<()>>;
@ -41,3 +49,40 @@ impl std::ops::Deref for RevisionOperation {
fn deref(&self) -> &Self::Target { &self.inner }
}
pub(crate) struct NotifyOpenDocAction {
user_id: String,
rev_id: RevId,
doc_id: String,
ws: Arc<dyn WsDocumentSender>,
}
impl NotifyOpenDocAction {
pub(crate) fn new(user_id: &str, doc_id: &str, rev_id: &RevId, ws: &Arc<dyn WsDocumentSender>) -> Self {
Self {
user_id: user_id.to_owned(),
rev_id: rev_id.clone(),
doc_id: doc_id.to_owned(),
ws: ws.clone(),
}
}
}
impl Action for NotifyOpenDocAction {
type Future = BoxFuture<'static, Result<Self::Item, Self::Error>>;
type Item = ();
type Error = DocError;
fn run(&mut self) -> Self::Future {
let new_doc_user = NewDocUser {
user_id: self.user_id.clone(),
rev_id: self.rev_id.clone().into(),
doc_id: self.doc_id.clone(),
};
match self.ws.send(new_doc_user.into()) {
Ok(_) => Box::pin(future::ready(Ok::<(), DocError>(()))),
Err(e) => Box::pin(future::ready(Err::<(), DocError>(e))),
}
}
}

View File

@ -17,5 +17,7 @@ protobuf = {version = "2.18.0"}
log = "0.4.14"
chrono = "0.4.19"
bytes = { version = "1.0" }
pin-project = "1.0.0"
futures-core = { version = "0.3", default-features = false }
pin-project = "1.0"
futures-core = { version = "0.3", default-features = false }
tokio = { version = "1.0", features = ["time"] }
rand = "0.8.3"

View File

@ -7,6 +7,7 @@ extern crate diesel_derives;
pub mod future;
pub mod kv;
mod protobuf;
pub mod retry;
#[allow(dead_code)]
pub fn uuid() -> String { uuid::Uuid::new_v4().to_string() }

View File

@ -0,0 +1,189 @@
use pin_project::pin_project;
use std::{
future::Future,
iter::{IntoIterator, Iterator},
pin::Pin,
task::{Context, Poll},
};
use tokio::time::{sleep_until, Duration, Instant, Sleep};
#[pin_project(project = RetryStateProj)]
enum RetryState<A>
where
A: Action,
{
Running(#[pin] A::Future),
Sleeping(#[pin] Sleep),
}
impl<A: Action> RetryState<A> {
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> RetryFuturePoll<A> {
match self.project() {
RetryStateProj::Running(future) => RetryFuturePoll::Running(future.poll(cx)),
RetryStateProj::Sleeping(future) => RetryFuturePoll::Sleeping(future.poll(cx)),
}
}
}
enum RetryFuturePoll<A>
where
A: Action,
{
Running(Poll<Result<A::Item, A::Error>>),
Sleeping(Poll<()>),
}
/// Future that drives multiple attempts at an action via a retry strategy.
#[pin_project]
pub struct Retry<I, A>
where
I: Iterator<Item = Duration>,
A: Action,
{
#[pin]
retry_if: RetryIf<I, A, fn(&A::Error) -> bool>,
}
impl<I, A> Retry<I, A>
where
I: Iterator<Item = Duration>,
A: Action,
{
pub fn spawn<T: IntoIterator<IntoIter = I, Item = Duration>>(strategy: T, action: A) -> Retry<I, A> {
Retry {
retry_if: RetryIf::spawn(strategy, action, (|_| true) as fn(&A::Error) -> bool),
}
}
}
impl<I, A> Future for Retry<I, A>
where
I: Iterator<Item = Duration>,
A: Action,
{
type Output = Result<A::Item, A::Error>;
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let this = self.project();
this.retry_if.poll(cx)
}
}
/// Future that drives multiple attempts at an action via a retry strategy.
/// Retries are only attempted if the `Error` returned by the future satisfies a
/// given condition.
#[pin_project]
pub struct RetryIf<I, A, C>
where
I: Iterator<Item = Duration>,
A: Action,
C: Condition<A::Error>,
{
strategy: I,
#[pin]
state: RetryState<A>,
action: A,
condition: C,
}
impl<I, A, C> RetryIf<I, A, C>
where
I: Iterator<Item = Duration>,
A: Action,
C: Condition<A::Error>,
{
pub fn spawn<T: IntoIterator<IntoIter = I, Item = Duration>>(
strategy: T,
mut action: A,
condition: C,
) -> RetryIf<I, A, C> {
RetryIf {
strategy: strategy.into_iter(),
state: RetryState::Running(action.run()),
action,
condition,
}
}
fn attempt(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<A::Item, A::Error>> {
let future = {
let this = self.as_mut().project();
this.action.run()
};
self.as_mut().project().state.set(RetryState::Running(future));
self.poll(cx)
}
fn retry(
mut self: Pin<&mut Self>,
err: A::Error,
cx: &mut Context,
) -> Result<Poll<Result<A::Item, A::Error>>, A::Error> {
match self.as_mut().project().strategy.next() {
None => Err(err),
Some(duration) => {
let deadline = Instant::now() + duration;
let future = sleep_until(deadline);
self.as_mut().project().state.set(RetryState::Sleeping(future));
Ok(self.poll(cx))
},
}
}
}
impl<I, A, C> Future for RetryIf<I, A, C>
where
I: Iterator<Item = Duration>,
A: Action,
C: Condition<A::Error>,
{
type Output = Result<A::Item, A::Error>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
match self.as_mut().project().state.poll(cx) {
RetryFuturePoll::Running(poll_result) => match poll_result {
Poll::Ready(Ok(ok)) => Poll::Ready(Ok(ok)),
Poll::Pending => Poll::Pending,
Poll::Ready(Err(err)) => {
if self.as_mut().project().condition.should_retry(&err) {
match self.retry(err, cx) {
Ok(poll) => poll,
Err(err) => Poll::Ready(Err(err)),
}
} else {
Poll::Ready(Err(err))
}
},
},
RetryFuturePoll::Sleeping(poll_result) => match poll_result {
Poll::Pending => Poll::Pending,
Poll::Ready(_) => self.attempt(cx),
},
}
}
}
/// An action can be run multiple times and produces a future.
pub trait Action {
type Future: Future<Output = Result<Self::Item, Self::Error>>;
type Item;
type Error;
fn run(&mut self) -> Self::Future;
}
impl<R, E, T: Future<Output = Result<R, E>>, F: FnMut() -> T> Action for F {
type Future = T;
type Item = R;
type Error = E;
fn run(&mut self) -> Self::Future { self() }
}
pub trait Condition<E> {
fn should_retry(&mut self, error: &E) -> bool;
}
impl<E, F: FnMut(&E) -> bool> Condition<E> for F {
fn should_retry(&mut self, error: &E) -> bool { self(error) }
}

View File

@ -0,0 +1,5 @@
mod future;
mod strategy;
pub use future::*;
pub use strategy::*;

View File

@ -0,0 +1,127 @@
use std::{iter::Iterator, time::Duration};
/// A retry strategy driven by exponential back-off.
///
/// The power corresponds to the number of past attempts.
#[derive(Debug, Clone)]
pub struct ExponentialBackoff {
current: u64,
base: u64,
factor: u64,
max_delay: Option<Duration>,
}
impl ExponentialBackoff {
/// Constructs a new exponential back-off strategy,
/// given a base duration in milliseconds.
///
/// The resulting duration is calculated by taking the base to the `n`-th
/// power, where `n` denotes the number of past attempts.
pub fn from_millis(base: u64) -> ExponentialBackoff {
ExponentialBackoff {
current: base,
base,
factor: 1u64,
max_delay: None,
}
}
/// A multiplicative factor that will be applied to the retry delay.
///
/// For example, using a factor of `1000` will make each delay in units of
/// seconds.
///
/// Default factor is `1`.
pub fn factor(mut self, factor: u64) -> ExponentialBackoff {
self.factor = factor;
self
}
/// Apply a maximum delay. No retry delay will be longer than this
/// `Duration`.
pub fn max_delay(mut self, duration: Duration) -> ExponentialBackoff {
self.max_delay = Some(duration);
self
}
}
impl Iterator for ExponentialBackoff {
type Item = Duration;
fn next(&mut self) -> Option<Duration> {
// set delay duration by applying factor
let duration = if let Some(duration) = self.current.checked_mul(self.factor) {
Duration::from_millis(duration)
} else {
Duration::from_millis(u64::MAX)
};
// check if we reached max delay
if let Some(ref max_delay) = self.max_delay {
if duration > *max_delay {
return Some(*max_delay);
}
}
if let Some(next) = self.current.checked_mul(self.base) {
self.current = next;
} else {
self.current = u64::MAX;
}
Some(duration)
}
}
#[test]
fn returns_some_exponential_base_10() {
let mut s = ExponentialBackoff::from_millis(10);
assert_eq!(s.next(), Some(Duration::from_millis(10)));
assert_eq!(s.next(), Some(Duration::from_millis(100)));
assert_eq!(s.next(), Some(Duration::from_millis(1000)));
}
#[test]
fn returns_some_exponential_base_2() {
let mut s = ExponentialBackoff::from_millis(2);
assert_eq!(s.next(), Some(Duration::from_millis(2)));
assert_eq!(s.next(), Some(Duration::from_millis(4)));
assert_eq!(s.next(), Some(Duration::from_millis(8)));
}
#[test]
fn saturates_at_maximum_value() {
let mut s = ExponentialBackoff::from_millis(u64::MAX - 1);
assert_eq!(s.next(), Some(Duration::from_millis(u64::MAX - 1)));
assert_eq!(s.next(), Some(Duration::from_millis(u64::MAX)));
assert_eq!(s.next(), Some(Duration::from_millis(u64::MAX)));
}
#[test]
fn can_use_factor_to_get_seconds() {
let factor = 1000;
let mut s = ExponentialBackoff::from_millis(2).factor(factor);
assert_eq!(s.next(), Some(Duration::from_secs(2)));
assert_eq!(s.next(), Some(Duration::from_secs(4)));
assert_eq!(s.next(), Some(Duration::from_secs(8)));
}
#[test]
fn stops_increasing_at_max_delay() {
let mut s = ExponentialBackoff::from_millis(2).max_delay(Duration::from_millis(4));
assert_eq!(s.next(), Some(Duration::from_millis(2)));
assert_eq!(s.next(), Some(Duration::from_millis(4)));
assert_eq!(s.next(), Some(Duration::from_millis(4)));
}
#[test]
fn returns_max_when_max_less_than_base() {
let mut s = ExponentialBackoff::from_millis(20).max_delay(Duration::from_millis(10));
assert_eq!(s.next(), Some(Duration::from_millis(10)));
assert_eq!(s.next(), Some(Duration::from_millis(10)));
}

View File

@ -0,0 +1,35 @@
use std::{iter::Iterator, time::Duration};
/// A retry strategy driven by a fixed interval.
#[derive(Debug, Clone)]
pub struct FixedInterval {
duration: Duration,
}
impl FixedInterval {
/// Constructs a new fixed interval strategy.
pub fn new(duration: Duration) -> FixedInterval { FixedInterval { duration } }
/// Constructs a new fixed interval strategy,
/// given a duration in milliseconds.
pub fn from_millis(millis: u64) -> FixedInterval {
FixedInterval {
duration: Duration::from_millis(millis),
}
}
}
impl Iterator for FixedInterval {
type Item = Duration;
fn next(&mut self) -> Option<Duration> { Some(self.duration) }
}
#[test]
fn returns_some_fixed() {
let mut s = FixedInterval::new(Duration::from_millis(123));
assert_eq!(s.next(), Some(Duration::from_millis(123)));
assert_eq!(s.next(), Some(Duration::from_millis(123)));
assert_eq!(s.next(), Some(Duration::from_millis(123)));
}

View File

@ -0,0 +1,5 @@
use std::time::Duration;
pub fn jitter(duration: Duration) -> Duration {
duration.mul_f64(rand::random::<f64>())
}

View File

@ -0,0 +1,7 @@
mod exponential_backoff;
mod fixed_interval;
mod jitter;
pub use exponential_backoff::*;
pub use fixed_interval::*;
pub use jitter::*;

View File

@ -8,6 +8,7 @@ edition = "2018"
[dependencies]
flowy-derive = { path = "../flowy-derive" }
flowy-net = { path = "../flowy-net" }
flowy-infra = { path = "../flowy-infra" }
tokio-tungstenite = "0.15"
futures-util = "0.3.17"

View File

@ -96,7 +96,7 @@ impl WsController {
Ok(stream) => {
let _ = state_notify.send(WsState::Connected(sender));
let _ = ret.send(Ok(()));
spawn_steam_and_handlers(stream, handlers, state_notify).await;
spawn_stream_and_handlers(stream, handlers, state_notify).await;
},
Err(e) => {
let _ = state_notify.send(WsState::Disconnected(e.clone()));
@ -128,7 +128,7 @@ impl WsController {
}
}
async fn spawn_steam_and_handlers(
async fn spawn_stream_and_handlers(
stream: WsStream,
handlers: WsHandlerFuture,
state_notify: Arc<broadcast::Sender<WsState>>,