mirror of
https://github.com/inventree/InvenTree
synced 2024-08-30 18:33:04 +00:00
208 lines
5.3 KiB
Python
208 lines
5.3 KiB
Python
"""
|
|
Functionality for Bill of Material (BOM) management.
|
|
Primarily BOM upload tools.
|
|
"""
|
|
|
|
from fuzzywuzzy import fuzz
|
|
import tablib
|
|
import os
|
|
|
|
from django.utils.translation import gettext_lazy as _
|
|
from django.core.exceptions import ValidationError
|
|
|
|
from InvenTree.helpers import DownloadFile
|
|
|
|
|
|
def IsValidBOMFormat(fmt):
|
|
""" Test if a file format specifier is in the valid list of BOM file formats """
|
|
|
|
return fmt.strip().lower() in ['csv', 'xls', 'xlsx', 'tsv']
|
|
|
|
|
|
def MakeBomTemplate(fmt):
|
|
""" Generate a Bill of Materials upload template file (for user download) """
|
|
|
|
fmt = fmt.strip().lower()
|
|
|
|
if not IsValidBOMFormat(fmt):
|
|
fmt = 'csv'
|
|
|
|
fields = [
|
|
'Part',
|
|
'Quantity',
|
|
'Overage',
|
|
'Reference',
|
|
'Notes'
|
|
]
|
|
|
|
data = tablib.Dataset(headers=fields).export(fmt)
|
|
|
|
filename = 'InvenTree_BOM_Template.' + fmt
|
|
|
|
return DownloadFile(data, filename)
|
|
|
|
|
|
class BomUploadManager:
|
|
""" Class for managing an uploaded BOM file """
|
|
|
|
# Fields which are absolutely necessary for valid upload
|
|
REQUIRED_HEADERS = [
|
|
'Part',
|
|
'Quantity'
|
|
]
|
|
|
|
# Fields which would be helpful but are not required
|
|
OPTIONAL_HEADERS = [
|
|
'Reference',
|
|
'Notes',
|
|
'Overage',
|
|
'Description',
|
|
'Category',
|
|
'Supplier',
|
|
'Manufacturer',
|
|
'MPN',
|
|
'IPN',
|
|
]
|
|
|
|
EDITABLE_HEADERS = [
|
|
'Reference',
|
|
'Notes'
|
|
]
|
|
|
|
HEADERS = REQUIRED_HEADERS + OPTIONAL_HEADERS
|
|
|
|
def __init__(self, bom_file):
|
|
""" Initialize the BomUpload class with a user-uploaded file object """
|
|
|
|
self.process(bom_file)
|
|
|
|
def process(self, bom_file):
|
|
""" Process a BOM file """
|
|
|
|
self.data = None
|
|
|
|
ext = os.path.splitext(bom_file.name)[-1].lower()
|
|
|
|
if ext in ['.csv', '.tsv', ]:
|
|
# These file formats need string decoding
|
|
raw_data = bom_file.read().decode('utf-8')
|
|
elif ext in ['.xls', '.xlsx']:
|
|
raw_data = bom_file.read()
|
|
else:
|
|
raise ValidationError({'bom_file': _('Unsupported file format: {f}'.format(f=ext))})
|
|
|
|
try:
|
|
self.data = tablib.Dataset().load(raw_data)
|
|
except tablib.UnsupportedFormat:
|
|
raise ValidationError({'bom_file': _('Error reading BOM file (invalid data)')})
|
|
except tablib.core.InvalidDimensions:
|
|
raise ValidationError({'bom_file': _('Error reading BOM file (incorrect row size)')})
|
|
|
|
def guess_header(self, header, threshold=80):
|
|
""" Try to match a header (from the file) to a list of known headers
|
|
|
|
Args:
|
|
header - Header name to look for
|
|
threshold - Match threshold for fuzzy search
|
|
"""
|
|
|
|
# Try for an exact match
|
|
for h in self.HEADERS:
|
|
if h == header:
|
|
return h
|
|
|
|
# Try for a case-insensitive match
|
|
for h in self.HEADERS:
|
|
if h.lower() == header.lower():
|
|
return h
|
|
|
|
# Finally, look for a close match using fuzzy matching
|
|
matches = []
|
|
|
|
for h in self.HEADERS:
|
|
ratio = fuzz.partial_ratio(header, h)
|
|
if ratio > threshold:
|
|
matches.append({'header': h, 'match': ratio})
|
|
|
|
if len(matches) > 0:
|
|
matches = sorted(matches, key=lambda item: item['match'], reverse=True)
|
|
return matches[0]['header']
|
|
|
|
return None
|
|
|
|
def columns(self):
|
|
""" Return a list of headers for the thingy """
|
|
headers = []
|
|
|
|
for header in self.data.headers:
|
|
headers.append({
|
|
'name': header,
|
|
'guess': self.guess_header(header)
|
|
})
|
|
|
|
return headers
|
|
|
|
def col_count(self):
|
|
if self.data is None:
|
|
return 0
|
|
|
|
return len(self.data.headers)
|
|
|
|
def row_count(self):
|
|
""" Return the number of rows in the file. """
|
|
|
|
if self.data is None:
|
|
return 0
|
|
|
|
return len(self.data)
|
|
|
|
def rows(self):
|
|
""" Return a list of all rows """
|
|
rows = []
|
|
|
|
for i in range(self.row_count()):
|
|
|
|
data = [item for item in self.get_row_data(i)]
|
|
|
|
# Is the row completely empty? Skip!
|
|
empty = True
|
|
|
|
for idx, item in enumerate(data):
|
|
if len(str(item).strip()) > 0:
|
|
empty = False
|
|
|
|
try:
|
|
# Excel import casts number-looking-items into floats, which is annoying
|
|
if item == int(item) and not str(item) == str(int(item)):
|
|
data[idx] = int(item)
|
|
except ValueError:
|
|
pass
|
|
|
|
# Skip empty rows
|
|
if empty:
|
|
continue
|
|
|
|
row = {
|
|
'data': data,
|
|
'index': i
|
|
}
|
|
|
|
rows.append(row)
|
|
|
|
return rows
|
|
|
|
def get_row_data(self, index):
|
|
""" Retrieve row data at a particular index """
|
|
if self.data is None or index >= len(self.data):
|
|
return None
|
|
|
|
return self.data[index]
|
|
|
|
def get_row_dict(self, index):
|
|
""" Retrieve a dict object representing the data row at a particular offset """
|
|
|
|
if self.data is None or index >= len(self.data):
|
|
return None
|
|
|
|
return self.data.dict[index]
|