InvokeAI/invokeai/backend/model_manager/merge.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

178 lines
7.9 KiB
Python
Raw Permalink Normal View History

Port the command-line tools to use model_manager2 (#5546) * Port the command-line tools to use model_manager2 1.Reimplement the following: - invokeai-model-install - invokeai-merge - invokeai-ti To avoid breaking the original modeal manager, the udpated tools have been renamed invokeai-model-install2 and invokeai-merge2. The textual inversion training script should continue to work with existing installations. The "starter" models now live in `invokeai/configs/INITIAL_MODELS2.yaml`. When the full model manager 2 is in place and working, I'll rename these files and commands. 2. Add the `merge` route to the web API. This will merge two or three models, resulting a new one. - Note that because the model installer selectively installs the `fp16` variant of models (rather than both 16- and 32-bit versions as previous), the diffusers merge script will choke on any huggingface diffuserse models that were downloaded with the new installer. Previously-downloaded models should continue to merge correctly. I have a PR upstream https://github.com/huggingface/diffusers/pull/6670 to fix this. 3. (more important!) During implementation of the CLI tools, found and fixed a number of small runtime bugs in the model_manager2 implementation: - During model database migration, if a registered models file was not found on disk, the migration would be aborted. Now the offending model is skipped with a log warning. - Caught and fixed a condition in which the installer would download the entire diffusers repo when the user provided a single `.safetensors` file URL. - Caught and fixed a condition in which the installer would raise an exception and stop the app when a request for an unknown model's metadata was passed to Civitai. Now an error is logged and the installer continues. - Replaced the LoWRA starter LoRA with FlatColor. The former has been removed from Civitai. * fix ruff issue --------- Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-02-02 17:18:47 +00:00
"""
invokeai.backend.model_manager.merge exports:
merge_diffusion_models() -- combine multiple models by location and return a pipeline object
merge_diffusion_models_and_commit() -- combine multiple models by ModelManager ID and write to models.yaml
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
"""
import warnings
from enum import Enum
from pathlib import Path
from typing import Any, List, Optional, Set
import torch
from diffusers import AutoPipelineForText2Image
from diffusers import logging as dlogging
from invokeai.app.services.model_install import ModelInstallServiceBase
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
from . import (
AnyModelConfig,
BaseModelType,
ModelType,
ModelVariantType,
)
from .config import MainDiffusersConfig
class MergeInterpolationMethod(str, Enum):
WeightedSum = "weighted_sum"
Sigmoid = "sigmoid"
InvSigmoid = "inv_sigmoid"
AddDifference = "add_difference"
class ModelMerger(object):
"""Wrapper class for model merge function."""
def __init__(self, installer: ModelInstallServiceBase):
"""
Initialize a ModelMerger object.
:param store: Underlying storage manager for the running process.
:param config: InvokeAIAppConfig object (if not provided, default will be selected).
"""
self._installer = installer
def merge_diffusion_models(
self,
model_paths: List[Path],
alpha: float = 0.5,
interp: Optional[MergeInterpolationMethod] = None,
force: bool = False,
variant: Optional[str] = None,
**kwargs: Any,
) -> Any: # pipe.merge is an untyped function.
"""
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
:param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
with warnings.catch_warnings():
warnings.simplefilter("ignore")
verbosity = dlogging.get_verbosity()
dlogging.set_verbosity_error()
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
# Note that checkpoint_merger will not work with downloaded HuggingFace fp16 models
# until upstream https://github.com/huggingface/diffusers/pull/6670 is merged and released.
pipe = AutoPipelineForText2Image.from_pretrained(
model_paths[0],
custom_pipeline="checkpoint_merger",
torch_dtype=dtype,
variant=variant,
)
merged_pipe = pipe.merge(
pretrained_model_name_or_path_list=model_paths,
alpha=alpha,
interp=interp.value if interp else None, # diffusers API treats None as "weighted sum"
force=force,
torch_dtype=dtype,
variant=variant,
**kwargs,
)
dlogging.set_verbosity(verbosity)
return merged_pipe
def merge_diffusion_models_and_save(
self,
model_keys: List[str],
merged_model_name: str,
alpha: float = 0.5,
force: bool = False,
interp: Optional[MergeInterpolationMethod] = None,
merge_dest_directory: Optional[Path] = None,
variant: Optional[str] = None,
**kwargs: Any,
) -> AnyModelConfig:
"""
:param models: up to three models, designated by their InvokeAI models.yaml model name
:param merged_model_name: name for new model
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
:param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None.
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C).
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
"""
model_paths: List[Path] = []
model_names: List[str] = []
config = self._installer.app_config
store = self._installer.record_store
base_models: Set[BaseModelType] = set()
vae = None
variant = None if self._installer.app_config.full_precision else "fp16"
assert (
len(model_keys) <= 2 or interp == MergeInterpolationMethod.AddDifference
), "When merging three models, only the 'add_difference' merge method is supported"
for key in model_keys:
info = store.get_model(key)
model_names.append(info.name)
assert isinstance(
info, MainDiffusersConfig
), f"{info.name} ({info.key}) is not a diffusers model. It must be optimized before merging"
assert info.variant == ModelVariantType(
"normal"
), f"{info.name} ({info.key}) is a {info.variant} model, which cannot currently be merged"
# pick up the first model's vae
if key == model_keys[0]:
vae = info.vae
# tally base models used
base_models.add(info.base)
model_paths.extend([config.models_path / info.path])
assert len(base_models) == 1, f"All models to merge must have same base model, but found bases {base_models}"
base_model = base_models.pop()
merge_method = None if interp == "weighted_sum" else MergeInterpolationMethod(interp)
merged_pipe = self.merge_diffusion_models(model_paths, alpha, merge_method, force, variant=variant, **kwargs)
dump_path = (
Path(merge_dest_directory)
if merge_dest_directory
else config.models_path / base_model.value / ModelType.Main.value
)
dump_path.mkdir(parents=True, exist_ok=True)
dump_path = dump_path / merged_model_name
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
merged_pipe.save_pretrained(dump_path.as_posix(), safe_serialization=True, torch_dtype=dtype, variant=variant)
# register model and get its unique key
key = self._installer.register_path(dump_path)
# update model's config
model_config = self._installer.record_store.get_model(key)
model_config.update(
{
"name": merged_model_name,
"description": f"Merge of models {', '.join(model_names)}",
"vae": vae,
}
)
self._installer.record_store.update_model(key, model_config)
return model_config