InvokeAI/ldm/data/personalized_style.py

170 lines
4.9 KiB
Python
Raw Permalink Normal View History

2022-08-23 22:26:28 +00:00
import os
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
import random
imagenet_templates_small = [
'a painting in the style of {}',
'a rendering in the style of {}',
'a cropped painting in the style of {}',
'the painting in the style of {}',
'a clean painting in the style of {}',
'a dirty painting in the style of {}',
'a dark painting in the style of {}',
'a picture in the style of {}',
'a cool painting in the style of {}',
'a close-up painting in the style of {}',
'a bright painting in the style of {}',
'a cropped painting in the style of {}',
'a good painting in the style of {}',
'a close-up painting in the style of {}',
'a rendition in the style of {}',
'a nice painting in the style of {}',
'a small painting in the style of {}',
'a weird painting in the style of {}',
'a large painting in the style of {}',
]
imagenet_dual_templates_small = [
'a painting in the style of {} with {}',
'a rendering in the style of {} with {}',
'a cropped painting in the style of {} with {}',
'the painting in the style of {} with {}',
'a clean painting in the style of {} with {}',
'a dirty painting in the style of {} with {}',
'a dark painting in the style of {} with {}',
'a cool painting in the style of {} with {}',
'a close-up painting in the style of {} with {}',
'a bright painting in the style of {} with {}',
'a cropped painting in the style of {} with {}',
'a good painting in the style of {} with {}',
'a painting of one {} in the style of {}',
'a nice painting in the style of {} with {}',
'a small painting in the style of {} with {}',
'a weird painting in the style of {} with {}',
'a large painting in the style of {} with {}',
]
per_img_token_list = [
'א',
'ב',
'ג',
'ד',
'ה',
'ו',
'ז',
'ח',
'ט',
'י',
'כ',
'ל',
'מ',
'נ',
'ס',
'ע',
'פ',
'צ',
'ק',
'ר',
'ש',
'ת',
2022-08-23 22:26:28 +00:00
]
2022-08-23 22:26:28 +00:00
class PersonalizedBase(Dataset):
def __init__(
self,
data_root,
size=None,
repeats=100,
interpolation='bicubic',
flip_p=0.5,
set='train',
placeholder_token='*',
per_image_tokens=False,
center_crop=False,
):
2022-08-23 22:26:28 +00:00
self.data_root = data_root
self.image_paths = [
os.path.join(self.data_root, file_path)
for file_path in os.listdir(self.data_root) if file_path != ".DS_Store"
]
2022-08-23 22:26:28 +00:00
# self._length = len(self.image_paths)
self.num_images = len(self.image_paths)
self._length = self.num_images
2022-08-23 22:26:28 +00:00
self.placeholder_token = placeholder_token
self.per_image_tokens = per_image_tokens
self.center_crop = center_crop
if per_image_tokens:
assert self.num_images < len(
per_img_token_list
), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
2022-08-23 22:26:28 +00:00
if set == 'train':
2022-08-23 22:26:28 +00:00
self._length = self.num_images * repeats
self.size = size
self.interpolation = {
'linear': PIL.Image.LINEAR,
'bilinear': PIL.Image.BILINEAR,
'bicubic': PIL.Image.BICUBIC,
'lanczos': PIL.Image.LANCZOS,
}[interpolation]
2022-08-23 22:26:28 +00:00
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == 'RGB':
image = image.convert('RGB')
2022-08-23 22:26:28 +00:00
if self.per_image_tokens and np.random.uniform() < 0.25:
text = random.choice(imagenet_dual_templates_small).format(
self.placeholder_token, per_img_token_list[i % self.num_images]
)
2022-08-23 22:26:28 +00:00
else:
text = random.choice(imagenet_templates_small).format(
self.placeholder_token
)
example['caption'] = text
2022-08-23 22:26:28 +00:00
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
2022-08-23 22:26:28 +00:00
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = (
img.shape[0],
img.shape[1],
)
img = img[
(h - crop) // 2 : (h + crop) // 2,
(w - crop) // 2 : (w + crop) // 2,
]
2022-08-23 22:26:28 +00:00
image = Image.fromarray(img)
if self.size is not None:
image = image.resize(
(self.size, self.size), resample=self.interpolation
)
2022-08-23 22:26:28 +00:00
image = self.flip(image)
image = np.array(image).astype(np.uint8)
example['image'] = (image / 127.5 - 1.0).astype(np.float32)
return example