InvokeAI/ldm/models/autoencoder.py

597 lines
18 KiB
Python
Raw Permalink Normal View History

2021-12-21 02:23:41 +00:00
import torch
import pytorch_lightning as pl
import torch.nn.functional as F
from contextlib import contextmanager
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.modules.distributions.distributions import (
DiagonalGaussianDistribution,
)
2021-12-21 02:23:41 +00:00
from ldm.util import instantiate_from_config
class VQModel(pl.LightningModule):
def __init__(
self,
ddconfig,
lossconfig,
n_embed,
embed_dim,
ckpt_path=None,
ignore_keys=[],
image_key='image',
colorize_nlabels=None,
monitor=None,
batch_resize_range=None,
scheduler_config=None,
lr_g_factor=1.0,
remap=None,
sane_index_shape=False, # tell vector quantizer to return indices as bhw
use_ema=False,
):
2021-12-21 02:23:41 +00:00
super().__init__()
self.embed_dim = embed_dim
self.n_embed = n_embed
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.loss = instantiate_from_config(lossconfig)
self.quantize = VectorQuantizer(
n_embed,
embed_dim,
beta=0.25,
remap=remap,
sane_index_shape=sane_index_shape,
)
self.quant_conv = torch.nn.Conv2d(ddconfig['z_channels'], embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(
embed_dim, ddconfig['z_channels'], 1
)
2021-12-21 02:23:41 +00:00
if colorize_nlabels is not None:
assert type(colorize_nlabels) == int
self.register_buffer(
'colorize', torch.randn(3, colorize_nlabels, 1, 1)
)
2021-12-21 02:23:41 +00:00
if monitor is not None:
self.monitor = monitor
self.batch_resize_range = batch_resize_range
if self.batch_resize_range is not None:
print(
f'{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.'
)
2021-12-21 02:23:41 +00:00
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self)
print(f'>> Keeping EMAs of {len(list(self.model_ema.buffers()))}.')
2021-12-21 02:23:41 +00:00
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.scheduler_config = scheduler_config
self.lr_g_factor = lr_g_factor
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f'{context}: Switched to EMA weights')
2021-12-21 02:23:41 +00:00
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f'{context}: Restored training weights')
2021-12-21 02:23:41 +00:00
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location='cpu')['state_dict']
2021-12-21 02:23:41 +00:00
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print('Deleting key {} from state_dict.'.format(k))
2021-12-21 02:23:41 +00:00
del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False)
print(
f'Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys'
)
2021-12-21 02:23:41 +00:00
if len(missing) > 0:
print(f'Missing Keys: {missing}')
print(f'Unexpected Keys: {unexpected}')
2021-12-21 02:23:41 +00:00
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self)
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
quant, emb_loss, info = self.quantize(h)
return quant, emb_loss, info
def encode_to_prequant(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
def decode(self, quant):
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
def decode_code(self, code_b):
quant_b = self.quantize.embed_code(code_b)
dec = self.decode(quant_b)
return dec
def forward(self, input, return_pred_indices=False):
quant, diff, (_, _, ind) = self.encode(input)
2021-12-21 02:23:41 +00:00
dec = self.decode(quant)
if return_pred_indices:
return dec, diff, ind
return dec, diff
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = (
x.permute(0, 3, 1, 2)
.to(memory_format=torch.contiguous_format)
.float()
)
2021-12-21 02:23:41 +00:00
if self.batch_resize_range is not None:
lower_size = self.batch_resize_range[0]
upper_size = self.batch_resize_range[1]
if self.global_step <= 4:
# do the first few batches with max size to avoid later oom
new_resize = upper_size
else:
new_resize = np.random.choice(
np.arange(lower_size, upper_size + 16, 16)
)
2021-12-21 02:23:41 +00:00
if new_resize != x.shape[2]:
x = F.interpolate(x, size=new_resize, mode='bicubic')
2021-12-21 02:23:41 +00:00
x = x.detach()
return x
def training_step(self, batch, batch_idx, optimizer_idx):
# https://github.com/pytorch/pytorch/issues/37142
# try not to fool the heuristics
x = self.get_input(batch, self.image_key)
xrec, qloss, ind = self(x, return_pred_indices=True)
if optimizer_idx == 0:
# autoencode
aeloss, log_dict_ae = self.loss(
qloss,
x,
xrec,
optimizer_idx,
self.global_step,
last_layer=self.get_last_layer(),
split='train',
predicted_indices=ind,
)
self.log_dict(
log_dict_ae,
prog_bar=False,
logger=True,
on_step=True,
on_epoch=True,
)
2021-12-21 02:23:41 +00:00
return aeloss
if optimizer_idx == 1:
# discriminator
discloss, log_dict_disc = self.loss(
qloss,
x,
xrec,
optimizer_idx,
self.global_step,
last_layer=self.get_last_layer(),
split='train',
)
self.log_dict(
log_dict_disc,
prog_bar=False,
logger=True,
on_step=True,
on_epoch=True,
)
2021-12-21 02:23:41 +00:00
return discloss
def validation_step(self, batch, batch_idx):
log_dict = self._validation_step(batch, batch_idx)
with self.ema_scope():
log_dict_ema = self._validation_step(
batch, batch_idx, suffix='_ema'
)
2021-12-21 02:23:41 +00:00
return log_dict
def _validation_step(self, batch, batch_idx, suffix=''):
2021-12-21 02:23:41 +00:00
x = self.get_input(batch, self.image_key)
xrec, qloss, ind = self(x, return_pred_indices=True)
aeloss, log_dict_ae = self.loss(
qloss,
x,
xrec,
0,
self.global_step,
last_layer=self.get_last_layer(),
split='val' + suffix,
predicted_indices=ind,
)
discloss, log_dict_disc = self.loss(
qloss,
x,
xrec,
1,
self.global_step,
last_layer=self.get_last_layer(),
split='val' + suffix,
predicted_indices=ind,
)
rec_loss = log_dict_ae[f'val{suffix}/rec_loss']
self.log(
f'val{suffix}/rec_loss',
rec_loss,
prog_bar=True,
logger=True,
on_step=False,
on_epoch=True,
sync_dist=True,
)
self.log(
f'val{suffix}/aeloss',
aeloss,
prog_bar=True,
logger=True,
on_step=False,
on_epoch=True,
sync_dist=True,
)
2021-12-21 02:23:41 +00:00
if version.parse(pl.__version__) >= version.parse('1.4.0'):
del log_dict_ae[f'val{suffix}/rec_loss']
2021-12-21 02:23:41 +00:00
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def configure_optimizers(self):
lr_d = self.learning_rate
lr_g = self.lr_g_factor * self.learning_rate
print('lr_d', lr_d)
print('lr_g', lr_g)
opt_ae = torch.optim.Adam(
list(self.encoder.parameters())
+ list(self.decoder.parameters())
+ list(self.quantize.parameters())
+ list(self.quant_conv.parameters())
+ list(self.post_quant_conv.parameters()),
lr=lr_g,
betas=(0.5, 0.9),
)
opt_disc = torch.optim.Adam(
self.loss.discriminator.parameters(), lr=lr_d, betas=(0.5, 0.9)
)
2021-12-21 02:23:41 +00:00
if self.scheduler_config is not None:
scheduler = instantiate_from_config(self.scheduler_config)
print('Setting up LambdaLR scheduler...')
2021-12-21 02:23:41 +00:00
scheduler = [
{
'scheduler': LambdaLR(
opt_ae, lr_lambda=scheduler.schedule
),
2021-12-21 02:23:41 +00:00
'interval': 'step',
'frequency': 1,
2021-12-21 02:23:41 +00:00
},
{
'scheduler': LambdaLR(
opt_disc, lr_lambda=scheduler.schedule
),
2021-12-21 02:23:41 +00:00
'interval': 'step',
'frequency': 1,
2021-12-21 02:23:41 +00:00
},
]
return [opt_ae, opt_disc], scheduler
return [opt_ae, opt_disc], []
def get_last_layer(self):
return self.decoder.conv_out.weight
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if only_inputs:
log['inputs'] = x
2021-12-21 02:23:41 +00:00
return log
xrec, _ = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log['inputs'] = x
log['reconstructions'] = xrec
2021-12-21 02:23:41 +00:00
if plot_ema:
with self.ema_scope():
xrec_ema, _ = self(x)
if x.shape[1] > 3:
xrec_ema = self.to_rgb(xrec_ema)
log['reconstructions_ema'] = xrec_ema
2021-12-21 02:23:41 +00:00
return log
def to_rgb(self, x):
assert self.image_key == 'segmentation'
if not hasattr(self, 'colorize'):
self.register_buffer(
'colorize', torch.randn(3, x.shape[1], 1, 1).to(x)
)
2021-12-21 02:23:41 +00:00
x = F.conv2d(x, weight=self.colorize)
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
2021-12-21 02:23:41 +00:00
return x
class VQModelInterface(VQModel):
def __init__(self, embed_dim, *args, **kwargs):
super().__init__(embed_dim=embed_dim, *args, **kwargs)
self.embed_dim = embed_dim
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
def decode(self, h, force_not_quantize=False):
# also go through quantization layer
if not force_not_quantize:
quant, emb_loss, info = self.quantize(h)
else:
quant = h
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
class AutoencoderKL(pl.LightningModule):
def __init__(
self,
ddconfig,
lossconfig,
embed_dim,
ckpt_path=None,
ignore_keys=[],
image_key='image',
colorize_nlabels=None,
monitor=None,
):
2021-12-21 02:23:41 +00:00
super().__init__()
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.loss = instantiate_from_config(lossconfig)
assert ddconfig['double_z']
self.quant_conv = torch.nn.Conv2d(
2 * ddconfig['z_channels'], 2 * embed_dim, 1
)
self.post_quant_conv = torch.nn.Conv2d(
embed_dim, ddconfig['z_channels'], 1
)
2021-12-21 02:23:41 +00:00
self.embed_dim = embed_dim
if colorize_nlabels is not None:
assert type(colorize_nlabels) == int
self.register_buffer(
'colorize', torch.randn(3, colorize_nlabels, 1, 1)
)
2021-12-21 02:23:41 +00:00
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location='cpu')['state_dict']
2021-12-21 02:23:41 +00:00
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print('Deleting key {} from state_dict.'.format(k))
2021-12-21 02:23:41 +00:00
del sd[k]
self.load_state_dict(sd, strict=False)
print(f'Restored from {path}')
2021-12-21 02:23:41 +00:00
def encode(self, x):
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z):
z = self.post_quant_conv(z)
dec = self.decoder(z)
return dec
def forward(self, input, sample_posterior=True):
posterior = self.encode(input)
if sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
dec = self.decode(z)
return dec, posterior
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = (
x.permute(0, 3, 1, 2)
.to(memory_format=torch.contiguous_format)
.float()
)
2021-12-21 02:23:41 +00:00
return x
def training_step(self, batch, batch_idx, optimizer_idx):
inputs = self.get_input(batch, self.image_key)
reconstructions, posterior = self(inputs)
if optimizer_idx == 0:
# train encoder+decoder+logvar
aeloss, log_dict_ae = self.loss(
inputs,
reconstructions,
posterior,
optimizer_idx,
self.global_step,
last_layer=self.get_last_layer(),
split='train',
)
self.log(
'aeloss',
aeloss,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True,
)
self.log_dict(
log_dict_ae,
prog_bar=False,
logger=True,
on_step=True,
on_epoch=False,
)
2021-12-21 02:23:41 +00:00
return aeloss
if optimizer_idx == 1:
# train the discriminator
discloss, log_dict_disc = self.loss(
inputs,
reconstructions,
posterior,
optimizer_idx,
self.global_step,
last_layer=self.get_last_layer(),
split='train',
)
self.log(
'discloss',
discloss,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=True,
)
self.log_dict(
log_dict_disc,
prog_bar=False,
logger=True,
on_step=True,
on_epoch=False,
)
2021-12-21 02:23:41 +00:00
return discloss
def validation_step(self, batch, batch_idx):
inputs = self.get_input(batch, self.image_key)
reconstructions, posterior = self(inputs)
aeloss, log_dict_ae = self.loss(
inputs,
reconstructions,
posterior,
0,
self.global_step,
last_layer=self.get_last_layer(),
split='val',
)
discloss, log_dict_disc = self.loss(
inputs,
reconstructions,
posterior,
1,
self.global_step,
last_layer=self.get_last_layer(),
split='val',
)
self.log('val/rec_loss', log_dict_ae['val/rec_loss'])
2021-12-21 02:23:41 +00:00
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def configure_optimizers(self):
lr = self.learning_rate
opt_ae = torch.optim.Adam(
list(self.encoder.parameters())
+ list(self.decoder.parameters())
+ list(self.quant_conv.parameters())
+ list(self.post_quant_conv.parameters()),
lr=lr,
betas=(0.5, 0.9),
)
opt_disc = torch.optim.Adam(
self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)
)
2021-12-21 02:23:41 +00:00
return [opt_ae, opt_disc], []
def get_last_layer(self):
return self.decoder.conv_out.weight
@torch.no_grad()
def log_images(self, batch, only_inputs=False, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if not only_inputs:
xrec, posterior = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log['samples'] = self.decode(torch.randn_like(posterior.sample()))
log['reconstructions'] = xrec
log['inputs'] = x
2021-12-21 02:23:41 +00:00
return log
def to_rgb(self, x):
assert self.image_key == 'segmentation'
if not hasattr(self, 'colorize'):
self.register_buffer(
'colorize', torch.randn(3, x.shape[1], 1, 1).to(x)
)
2021-12-21 02:23:41 +00:00
x = F.conv2d(x, weight=self.colorize)
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
2021-12-21 02:23:41 +00:00
return x
class IdentityFirstStage(torch.nn.Module):
def __init__(self, *args, vq_interface=False, **kwargs):
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
super().__init__()
def encode(self, x, *args, **kwargs):
return x
def decode(self, x, *args, **kwargs):
return x
def quantize(self, x, *args, **kwargs):
if self.vq_interface:
return x, None, [None, None, None]
return x
def forward(self, x, *args, **kwargs):
return x