InvokeAI/clothing_workflow.ipynb

159 lines
3.9 KiB
Plaintext
Raw Permalink Normal View History

2024-07-25 18:14:12 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "aeb428d0-0817-462c-b5d8-455a0615d305",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from PIL import Image\n",
"import numpy as np\n",
"import cv2\n",
"\n",
2024-07-25 19:31:46 +00:00
"from invokeai.backend.vto_workflow.overlay_pattern import generate_dress_mask, multiply_images\n",
2024-07-25 18:48:39 +00:00
"from invokeai.backend.vto_workflow.extract_channel import extract_channel, ImageChannel\n",
"from invokeai.backend.vto_workflow.seamless_mapping import map_seamless_tiles\n",
"\n",
"\n"
2024-07-25 18:14:12 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6140d4b7-8238-431c-848e-6f6ae27652f5",
"metadata": {},
"outputs": [],
"source": [
" # Load the model image.\n",
"model_image = Image.open(\"/home/ryan/src/InvokeAI/invokeai/backend/vto_workflow/dress.jpeg\")\n",
"\n",
"# Load the pattern image.\n",
"pattern_image = Image.open(\"/home/ryan/src/InvokeAI/invokeai/backend/vto_workflow/pattern1.jpg\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fb7186ba-dc0c-4520-ac30-49073a65601a",
"metadata": {},
"outputs": [],
"source": [
"mask = generate_dress_mask(model_image)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9b935de4-94c5-4be5-bf8e-a5a6e445c811",
"metadata": {},
"outputs": [],
"source": [
"# Visualize mask\n",
"model_image_np = np.array(model_image)\n",
"masked_model_image = (model_image_np * np.expand_dims(mask, -1).astype(np.float32)).astype(np.uint8)\n",
"mask_image = Image.fromarray(masked_model_image)\n",
"mask_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e51bb545",
"metadata": {},
"outputs": [],
"source": [
"shadows = extract_channel(np.array(model_image), ImageChannel.LAB_L)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ec43de4a",
"metadata": {},
"outputs": [],
"source": [
"# Visualize masked shadows\n",
"masked_shadows = (shadows * mask).astype(np.uint8)\n",
"masked_shadows_image = Image.fromarray(masked_shadows)\n",
"masked_shadows_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dbb53794",
"metadata": {},
"outputs": [],
2024-07-25 18:48:39 +00:00
"source": [
2024-07-25 19:31:46 +00:00
"# Tile the pattern.\n",
"expanded_pattern = map_seamless_tiles(seamless_tile=pattern_image, target_hw=(model_image.height, model_image.width), num_repeats_h=10.0)\n"
2024-07-25 18:48:39 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
2024-07-25 19:31:46 +00:00
"id": "f4f22d02",
2024-07-25 18:48:39 +00:00
"metadata": {},
"outputs": [],
"source": [
2024-07-25 19:31:46 +00:00
"# Multiply the pattern by the shadows.\n",
"pattern_with_shadows = multiply_images(expanded_pattern, shadows)\n",
"pattern_with_shadows"
2024-07-25 18:48:39 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
2024-07-25 19:31:46 +00:00
"id": "97db42b0",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "de32f7e3",
"metadata": {},
"outputs": [],
"source": [
"# Merge the pattern with the model image.\n",
"pattern_with_shadows_np = np.array(pattern_with_shadows)\n",
"merged_image = np.where(mask[:, :, None], pattern_with_shadows_np,model_image_np)\n",
"merged_image = Image.fromarray(merged_image)\n",
"merged_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ff1d4044",
2024-07-25 18:48:39 +00:00
"metadata": {},
"outputs": [],
2024-07-25 18:14:12 +00:00
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}