InvokeAI/ldm/invoke/restoration/realesrgan.py

89 lines
2.8 KiB
Python
Raw Normal View History

import torch
import warnings
import numpy as np
import os
from ldm.invoke.globals import Globals
from PIL import Image
class ESRGAN():
def __init__(self, bg_tile_size=400) -> None:
self.bg_tile_size = bg_tile_size
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
def load_esrgan_bg_upsampler(self):
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
2022-09-25 22:11:59 +00:00
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
from realesrgan import RealESRGANer
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = os.path.join(Globals.root,'models/realesrgan/realesr-general-x4v3.pth')
2022-09-25 22:11:59 +00:00
scale = 4
bg_upsampler = RealESRGANer(
scale=scale,
model_path=model_path,
model=model,
tile=self.bg_tile_size,
tile_pad=10,
pre_pad=0,
half=use_half_precision,
)
return bg_upsampler
def process(self, image, strength: float, seed: str = None, upsampler_scale: int = 2):
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
try:
upsampler = self.load_esrgan_bg_upsampler()
except Exception:
import traceback
import sys
print('>> Error loading Real-ESRGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
2022-09-25 22:11:59 +00:00
if upsampler_scale == 0:
print('>> Real-ESRGAN: Invalid scaling option. Image not upscaled.')
return image
if seed is not None:
print(
f'>> Real-ESRGAN Upscaling seed:{seed} : scale:{upsampler_scale}x'
)
# REALSRGAN expects a BGR np array; make array and flip channels
bgr_image_array = np.array(image, dtype=np.uint8)[...,::-1]
2022-09-25 22:11:59 +00:00
output, _ = upsampler.enhance(
bgr_image_array,
outscale=upsampler_scale,
alpha_upsampler='realesrgan',
)
# Flip the channels back to RGB
res = Image.fromarray(output[...,::-1])
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if output.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
upsampler = None
return res