mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
634 lines
30 KiB
Python
634 lines
30 KiB
Python
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
|
||
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||
|
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
||
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
||
|
from diffusers.models.modeling_utils import ModelMixin
|
||
|
from diffusers.models.unet_2d_blocks import (
|
||
|
CrossAttnDownBlock2D,
|
||
|
DownBlock2D,
|
||
|
UNetMidBlock2DCrossAttn,
|
||
|
get_down_block,
|
||
|
)
|
||
|
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
||
|
|
||
|
import diffusers
|
||
|
from diffusers.models.controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
|
||
|
|
||
|
# Modified ControlNetModel with encoder_attention_mask argument added
|
||
|
|
||
|
class ControlNetModel(ModelMixin, ConfigMixin):
|
||
|
"""
|
||
|
A ControlNet model.
|
||
|
|
||
|
Args:
|
||
|
in_channels (`int`, defaults to 4):
|
||
|
The number of channels in the input sample.
|
||
|
flip_sin_to_cos (`bool`, defaults to `True`):
|
||
|
Whether to flip the sin to cos in the time embedding.
|
||
|
freq_shift (`int`, defaults to 0):
|
||
|
The frequency shift to apply to the time embedding.
|
||
|
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
||
|
The tuple of downsample blocks to use.
|
||
|
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
||
|
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
||
|
The tuple of output channels for each block.
|
||
|
layers_per_block (`int`, defaults to 2):
|
||
|
The number of layers per block.
|
||
|
downsample_padding (`int`, defaults to 1):
|
||
|
The padding to use for the downsampling convolution.
|
||
|
mid_block_scale_factor (`float`, defaults to 1):
|
||
|
The scale factor to use for the mid block.
|
||
|
act_fn (`str`, defaults to "silu"):
|
||
|
The activation function to use.
|
||
|
norm_num_groups (`int`, *optional*, defaults to 32):
|
||
|
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
||
|
in post-processing.
|
||
|
norm_eps (`float`, defaults to 1e-5):
|
||
|
The epsilon to use for the normalization.
|
||
|
cross_attention_dim (`int`, defaults to 1280):
|
||
|
The dimension of the cross attention features.
|
||
|
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
||
|
The dimension of the attention heads.
|
||
|
use_linear_projection (`bool`, defaults to `False`):
|
||
|
class_embed_type (`str`, *optional*, defaults to `None`):
|
||
|
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
||
|
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
||
|
num_class_embeds (`int`, *optional*, defaults to 0):
|
||
|
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
||
|
class conditioning with `class_embed_type` equal to `None`.
|
||
|
upcast_attention (`bool`, defaults to `False`):
|
||
|
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
||
|
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
||
|
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
||
|
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
||
|
`class_embed_type="projection"`.
|
||
|
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
||
|
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
||
|
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
||
|
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
||
|
global_pool_conditions (`bool`, defaults to `False`):
|
||
|
"""
|
||
|
|
||
|
_supports_gradient_checkpointing = True
|
||
|
|
||
|
@register_to_config
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int = 4,
|
||
|
conditioning_channels: int = 3,
|
||
|
flip_sin_to_cos: bool = True,
|
||
|
freq_shift: int = 0,
|
||
|
down_block_types: Tuple[str] = (
|
||
|
"CrossAttnDownBlock2D",
|
||
|
"CrossAttnDownBlock2D",
|
||
|
"CrossAttnDownBlock2D",
|
||
|
"DownBlock2D",
|
||
|
),
|
||
|
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
||
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
||
|
layers_per_block: int = 2,
|
||
|
downsample_padding: int = 1,
|
||
|
mid_block_scale_factor: float = 1,
|
||
|
act_fn: str = "silu",
|
||
|
norm_num_groups: Optional[int] = 32,
|
||
|
norm_eps: float = 1e-5,
|
||
|
cross_attention_dim: int = 1280,
|
||
|
attention_head_dim: Union[int, Tuple[int]] = 8,
|
||
|
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
||
|
use_linear_projection: bool = False,
|
||
|
class_embed_type: Optional[str] = None,
|
||
|
num_class_embeds: Optional[int] = None,
|
||
|
upcast_attention: bool = False,
|
||
|
resnet_time_scale_shift: str = "default",
|
||
|
projection_class_embeddings_input_dim: Optional[int] = None,
|
||
|
controlnet_conditioning_channel_order: str = "rgb",
|
||
|
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
||
|
global_pool_conditions: bool = False,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
# If `num_attention_heads` is not defined (which is the case for most models)
|
||
|
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
||
|
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
||
|
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
||
|
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
||
|
# which is why we correct for the naming here.
|
||
|
num_attention_heads = num_attention_heads or attention_head_dim
|
||
|
|
||
|
# Check inputs
|
||
|
if len(block_out_channels) != len(down_block_types):
|
||
|
raise ValueError(
|
||
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
||
|
)
|
||
|
|
||
|
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
||
|
raise ValueError(
|
||
|
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
||
|
)
|
||
|
|
||
|
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
||
|
raise ValueError(
|
||
|
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
||
|
)
|
||
|
|
||
|
# input
|
||
|
conv_in_kernel = 3
|
||
|
conv_in_padding = (conv_in_kernel - 1) // 2
|
||
|
self.conv_in = nn.Conv2d(
|
||
|
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
||
|
)
|
||
|
|
||
|
# time
|
||
|
time_embed_dim = block_out_channels[0] * 4
|
||
|
|
||
|
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
||
|
timestep_input_dim = block_out_channels[0]
|
||
|
|
||
|
self.time_embedding = TimestepEmbedding(
|
||
|
timestep_input_dim,
|
||
|
time_embed_dim,
|
||
|
act_fn=act_fn,
|
||
|
)
|
||
|
|
||
|
# class embedding
|
||
|
if class_embed_type is None and num_class_embeds is not None:
|
||
|
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
||
|
elif class_embed_type == "timestep":
|
||
|
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
||
|
elif class_embed_type == "identity":
|
||
|
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
||
|
elif class_embed_type == "projection":
|
||
|
if projection_class_embeddings_input_dim is None:
|
||
|
raise ValueError(
|
||
|
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
||
|
)
|
||
|
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
||
|
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
||
|
# 2. it projects from an arbitrary input dimension.
|
||
|
#
|
||
|
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
||
|
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
||
|
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
||
|
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||
|
else:
|
||
|
self.class_embedding = None
|
||
|
|
||
|
# control net conditioning embedding
|
||
|
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
||
|
conditioning_embedding_channels=block_out_channels[0],
|
||
|
block_out_channels=conditioning_embedding_out_channels,
|
||
|
conditioning_channels=conditioning_channels,
|
||
|
)
|
||
|
|
||
|
self.down_blocks = nn.ModuleList([])
|
||
|
self.controlnet_down_blocks = nn.ModuleList([])
|
||
|
|
||
|
if isinstance(only_cross_attention, bool):
|
||
|
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
||
|
|
||
|
if isinstance(attention_head_dim, int):
|
||
|
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
||
|
|
||
|
if isinstance(num_attention_heads, int):
|
||
|
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
||
|
|
||
|
# down
|
||
|
output_channel = block_out_channels[0]
|
||
|
|
||
|
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
||
|
controlnet_block = zero_module(controlnet_block)
|
||
|
self.controlnet_down_blocks.append(controlnet_block)
|
||
|
|
||
|
for i, down_block_type in enumerate(down_block_types):
|
||
|
input_channel = output_channel
|
||
|
output_channel = block_out_channels[i]
|
||
|
is_final_block = i == len(block_out_channels) - 1
|
||
|
|
||
|
down_block = get_down_block(
|
||
|
down_block_type,
|
||
|
num_layers=layers_per_block,
|
||
|
in_channels=input_channel,
|
||
|
out_channels=output_channel,
|
||
|
temb_channels=time_embed_dim,
|
||
|
add_downsample=not is_final_block,
|
||
|
resnet_eps=norm_eps,
|
||
|
resnet_act_fn=act_fn,
|
||
|
resnet_groups=norm_num_groups,
|
||
|
cross_attention_dim=cross_attention_dim,
|
||
|
num_attention_heads=num_attention_heads[i],
|
||
|
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
||
|
downsample_padding=downsample_padding,
|
||
|
use_linear_projection=use_linear_projection,
|
||
|
only_cross_attention=only_cross_attention[i],
|
||
|
upcast_attention=upcast_attention,
|
||
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
|
)
|
||
|
self.down_blocks.append(down_block)
|
||
|
|
||
|
for _ in range(layers_per_block):
|
||
|
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
||
|
controlnet_block = zero_module(controlnet_block)
|
||
|
self.controlnet_down_blocks.append(controlnet_block)
|
||
|
|
||
|
if not is_final_block:
|
||
|
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
||
|
controlnet_block = zero_module(controlnet_block)
|
||
|
self.controlnet_down_blocks.append(controlnet_block)
|
||
|
|
||
|
# mid
|
||
|
mid_block_channel = block_out_channels[-1]
|
||
|
|
||
|
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
||
|
controlnet_block = zero_module(controlnet_block)
|
||
|
self.controlnet_mid_block = controlnet_block
|
||
|
|
||
|
self.mid_block = UNetMidBlock2DCrossAttn(
|
||
|
in_channels=mid_block_channel,
|
||
|
temb_channels=time_embed_dim,
|
||
|
resnet_eps=norm_eps,
|
||
|
resnet_act_fn=act_fn,
|
||
|
output_scale_factor=mid_block_scale_factor,
|
||
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
|
cross_attention_dim=cross_attention_dim,
|
||
|
num_attention_heads=num_attention_heads[-1],
|
||
|
resnet_groups=norm_num_groups,
|
||
|
use_linear_projection=use_linear_projection,
|
||
|
upcast_attention=upcast_attention,
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def from_unet(
|
||
|
cls,
|
||
|
unet: UNet2DConditionModel,
|
||
|
controlnet_conditioning_channel_order: str = "rgb",
|
||
|
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
||
|
load_weights_from_unet: bool = True,
|
||
|
):
|
||
|
r"""
|
||
|
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
||
|
|
||
|
Parameters:
|
||
|
unet (`UNet2DConditionModel`):
|
||
|
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
||
|
where applicable.
|
||
|
"""
|
||
|
controlnet = cls(
|
||
|
in_channels=unet.config.in_channels,
|
||
|
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
||
|
freq_shift=unet.config.freq_shift,
|
||
|
down_block_types=unet.config.down_block_types,
|
||
|
only_cross_attention=unet.config.only_cross_attention,
|
||
|
block_out_channels=unet.config.block_out_channels,
|
||
|
layers_per_block=unet.config.layers_per_block,
|
||
|
downsample_padding=unet.config.downsample_padding,
|
||
|
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
||
|
act_fn=unet.config.act_fn,
|
||
|
norm_num_groups=unet.config.norm_num_groups,
|
||
|
norm_eps=unet.config.norm_eps,
|
||
|
cross_attention_dim=unet.config.cross_attention_dim,
|
||
|
attention_head_dim=unet.config.attention_head_dim,
|
||
|
num_attention_heads=unet.config.num_attention_heads,
|
||
|
use_linear_projection=unet.config.use_linear_projection,
|
||
|
class_embed_type=unet.config.class_embed_type,
|
||
|
num_class_embeds=unet.config.num_class_embeds,
|
||
|
upcast_attention=unet.config.upcast_attention,
|
||
|
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
||
|
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
||
|
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
||
|
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
||
|
)
|
||
|
|
||
|
if load_weights_from_unet:
|
||
|
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
||
|
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
||
|
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
||
|
|
||
|
if controlnet.class_embedding:
|
||
|
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
||
|
|
||
|
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
||
|
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
||
|
|
||
|
return controlnet
|
||
|
|
||
|
@property
|
||
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||
|
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||
|
indexed by its weight name.
|
||
|
"""
|
||
|
# set recursively
|
||
|
processors = {}
|
||
|
|
||
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||
|
if hasattr(module, "set_processor"):
|
||
|
processors[f"{name}.processor"] = module.processor
|
||
|
|
||
|
for sub_name, child in module.named_children():
|
||
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||
|
|
||
|
return processors
|
||
|
|
||
|
for name, module in self.named_children():
|
||
|
fn_recursive_add_processors(name, module, processors)
|
||
|
|
||
|
return processors
|
||
|
|
||
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||
|
r"""
|
||
|
Sets the attention processor to use to compute attention.
|
||
|
|
||
|
Parameters:
|
||
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||
|
for **all** `Attention` layers.
|
||
|
|
||
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||
|
processor. This is strongly recommended when setting trainable attention processors.
|
||
|
|
||
|
"""
|
||
|
count = len(self.attn_processors.keys())
|
||
|
|
||
|
if isinstance(processor, dict) and len(processor) != count:
|
||
|
raise ValueError(
|
||
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||
|
)
|
||
|
|
||
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||
|
if hasattr(module, "set_processor"):
|
||
|
if not isinstance(processor, dict):
|
||
|
module.set_processor(processor)
|
||
|
else:
|
||
|
module.set_processor(processor.pop(f"{name}.processor"))
|
||
|
|
||
|
for sub_name, child in module.named_children():
|
||
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||
|
|
||
|
for name, module in self.named_children():
|
||
|
fn_recursive_attn_processor(name, module, processor)
|
||
|
|
||
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
||
|
def set_default_attn_processor(self):
|
||
|
"""
|
||
|
Disables custom attention processors and sets the default attention implementation.
|
||
|
"""
|
||
|
self.set_attn_processor(AttnProcessor())
|
||
|
|
||
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
||
|
def set_attention_slice(self, slice_size):
|
||
|
r"""
|
||
|
Enable sliced attention computation.
|
||
|
|
||
|
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
||
|
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
||
|
|
||
|
Args:
|
||
|
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
||
|
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
||
|
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
||
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
||
|
must be a multiple of `slice_size`.
|
||
|
"""
|
||
|
sliceable_head_dims = []
|
||
|
|
||
|
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
||
|
if hasattr(module, "set_attention_slice"):
|
||
|
sliceable_head_dims.append(module.sliceable_head_dim)
|
||
|
|
||
|
for child in module.children():
|
||
|
fn_recursive_retrieve_sliceable_dims(child)
|
||
|
|
||
|
# retrieve number of attention layers
|
||
|
for module in self.children():
|
||
|
fn_recursive_retrieve_sliceable_dims(module)
|
||
|
|
||
|
num_sliceable_layers = len(sliceable_head_dims)
|
||
|
|
||
|
if slice_size == "auto":
|
||
|
# half the attention head size is usually a good trade-off between
|
||
|
# speed and memory
|
||
|
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
||
|
elif slice_size == "max":
|
||
|
# make smallest slice possible
|
||
|
slice_size = num_sliceable_layers * [1]
|
||
|
|
||
|
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
||
|
|
||
|
if len(slice_size) != len(sliceable_head_dims):
|
||
|
raise ValueError(
|
||
|
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
||
|
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
||
|
)
|
||
|
|
||
|
for i in range(len(slice_size)):
|
||
|
size = slice_size[i]
|
||
|
dim = sliceable_head_dims[i]
|
||
|
if size is not None and size > dim:
|
||
|
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
||
|
|
||
|
# Recursively walk through all the children.
|
||
|
# Any children which exposes the set_attention_slice method
|
||
|
# gets the message
|
||
|
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
||
|
if hasattr(module, "set_attention_slice"):
|
||
|
module.set_attention_slice(slice_size.pop())
|
||
|
|
||
|
for child in module.children():
|
||
|
fn_recursive_set_attention_slice(child, slice_size)
|
||
|
|
||
|
reversed_slice_size = list(reversed(slice_size))
|
||
|
for module in self.children():
|
||
|
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
||
|
|
||
|
def _set_gradient_checkpointing(self, module, value=False):
|
||
|
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
||
|
module.gradient_checkpointing = value
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
sample: torch.FloatTensor,
|
||
|
timestep: Union[torch.Tensor, float, int],
|
||
|
encoder_hidden_states: torch.Tensor,
|
||
|
controlnet_cond: torch.FloatTensor,
|
||
|
conditioning_scale: float = 1.0,
|
||
|
class_labels: Optional[torch.Tensor] = None,
|
||
|
timestep_cond: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
|
guess_mode: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[ControlNetOutput, Tuple]:
|
||
|
"""
|
||
|
The [`ControlNetModel`] forward method.
|
||
|
|
||
|
Args:
|
||
|
sample (`torch.FloatTensor`):
|
||
|
The noisy input tensor.
|
||
|
timestep (`Union[torch.Tensor, float, int]`):
|
||
|
The number of timesteps to denoise an input.
|
||
|
encoder_hidden_states (`torch.Tensor`):
|
||
|
The encoder hidden states.
|
||
|
controlnet_cond (`torch.FloatTensor`):
|
||
|
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
conditioning_scale (`float`, defaults to `1.0`):
|
||
|
The scale factor for ControlNet outputs.
|
||
|
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
||
|
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
||
|
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
||
|
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
||
|
cross_attention_kwargs(`dict[str]`, *optional*, defaults to `None`):
|
||
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
||
|
encoder_attention_mask (`torch.Tensor`):
|
||
|
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
||
|
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
||
|
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
||
|
guess_mode (`bool`, defaults to `False`):
|
||
|
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
||
|
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
||
|
return_dict (`bool`, defaults to `True`):
|
||
|
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
||
|
|
||
|
Returns:
|
||
|
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
||
|
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
||
|
returned where the first element is the sample tensor.
|
||
|
"""
|
||
|
# check channel order
|
||
|
channel_order = self.config.controlnet_conditioning_channel_order
|
||
|
|
||
|
if channel_order == "rgb":
|
||
|
# in rgb order by default
|
||
|
...
|
||
|
elif channel_order == "bgr":
|
||
|
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
||
|
else:
|
||
|
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
||
|
|
||
|
# prepare attention_mask
|
||
|
if attention_mask is not None:
|
||
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
||
|
attention_mask = attention_mask.unsqueeze(1)
|
||
|
|
||
|
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
||
|
if encoder_attention_mask is not None:
|
||
|
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
||
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
||
|
|
||
|
# 1. time
|
||
|
timesteps = timestep
|
||
|
if not torch.is_tensor(timesteps):
|
||
|
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
||
|
# This would be a good case for the `match` statement (Python 3.10+)
|
||
|
is_mps = sample.device.type == "mps"
|
||
|
if isinstance(timestep, float):
|
||
|
dtype = torch.float32 if is_mps else torch.float64
|
||
|
else:
|
||
|
dtype = torch.int32 if is_mps else torch.int64
|
||
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
||
|
elif len(timesteps.shape) == 0:
|
||
|
timesteps = timesteps[None].to(sample.device)
|
||
|
|
||
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||
|
timesteps = timesteps.expand(sample.shape[0])
|
||
|
|
||
|
t_emb = self.time_proj(timesteps)
|
||
|
|
||
|
# timesteps does not contain any weights and will always return f32 tensors
|
||
|
# but time_embedding might actually be running in fp16. so we need to cast here.
|
||
|
# there might be better ways to encapsulate this.
|
||
|
t_emb = t_emb.to(dtype=sample.dtype)
|
||
|
|
||
|
emb = self.time_embedding(t_emb, timestep_cond)
|
||
|
|
||
|
if self.class_embedding is not None:
|
||
|
if class_labels is None:
|
||
|
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
||
|
|
||
|
if self.config.class_embed_type == "timestep":
|
||
|
class_labels = self.time_proj(class_labels)
|
||
|
|
||
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
||
|
emb = emb + class_emb
|
||
|
|
||
|
# 2. pre-process
|
||
|
sample = self.conv_in(sample)
|
||
|
|
||
|
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
||
|
|
||
|
sample = sample + controlnet_cond
|
||
|
|
||
|
# 3. down
|
||
|
down_block_res_samples = (sample,)
|
||
|
for downsample_block in self.down_blocks:
|
||
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
||
|
sample, res_samples = downsample_block(
|
||
|
hidden_states=sample,
|
||
|
temb=emb,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
)
|
||
|
else:
|
||
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
||
|
|
||
|
down_block_res_samples += res_samples
|
||
|
|
||
|
# 4. mid
|
||
|
if self.mid_block is not None:
|
||
|
sample = self.mid_block(
|
||
|
sample,
|
||
|
emb,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
)
|
||
|
|
||
|
# 5. Control net blocks
|
||
|
|
||
|
controlnet_down_block_res_samples = ()
|
||
|
|
||
|
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
||
|
down_block_res_sample = controlnet_block(down_block_res_sample)
|
||
|
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
||
|
|
||
|
down_block_res_samples = controlnet_down_block_res_samples
|
||
|
|
||
|
mid_block_res_sample = self.controlnet_mid_block(sample)
|
||
|
|
||
|
# 6. scaling
|
||
|
if guess_mode and not self.config.global_pool_conditions:
|
||
|
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
||
|
|
||
|
scales = scales * conditioning_scale
|
||
|
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
||
|
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
||
|
else:
|
||
|
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
||
|
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
||
|
|
||
|
if self.config.global_pool_conditions:
|
||
|
down_block_res_samples = [
|
||
|
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
||
|
]
|
||
|
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (down_block_res_samples, mid_block_res_sample)
|
||
|
|
||
|
return ControlNetOutput(
|
||
|
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
||
|
)
|
||
|
|
||
|
diffusers.ControlNetModel = ControlNetModel
|
||
|
diffusers.models.controlnet.ControlNetModel = ControlNetModel
|