mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
132 lines
4.3 KiB
Python
132 lines
4.3 KiB
Python
|
import os
|
||
|
import torch
|
||
|
from pydantic import Field
|
||
|
from typing import Literal, Optional
|
||
|
from .base import (
|
||
|
ModelBase,
|
||
|
ModelConfigBase,
|
||
|
BaseModelType,
|
||
|
ModelType,
|
||
|
SubModelType,
|
||
|
DiffusersModel,
|
||
|
)
|
||
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||
|
|
||
|
|
||
|
# TODO: how to name properly
|
||
|
class StableDiffusion15Model(DiffusersModel):
|
||
|
|
||
|
# TODO: str -> Path?
|
||
|
class DiffusersConfig(ModelConfigBase):
|
||
|
format: Literal["diffusers"]
|
||
|
vae: Optional[str] = Field(None)
|
||
|
|
||
|
class CheckpointConfig(ModelConfigBase):
|
||
|
format: Literal["checkpoint"]
|
||
|
vae: Optional[str] = Field(None)
|
||
|
config: Optional[str] = Field(None)
|
||
|
|
||
|
|
||
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||
|
assert base_model == BaseModelType.StableDiffusion1_5
|
||
|
assert model_type == ModelType.Pipeline
|
||
|
super().__init__(
|
||
|
model_path=model_path,
|
||
|
base_model=BaseModelType.StableDiffusion1_5,
|
||
|
model_type=ModelType.Pipeline,
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def save_to_config(cls) -> bool:
|
||
|
return True
|
||
|
|
||
|
@classmethod
|
||
|
def detect_format(cls, model_path: str):
|
||
|
if os.path.isdir(model_path):
|
||
|
return "diffusers"
|
||
|
else:
|
||
|
return "checkpoint"
|
||
|
|
||
|
@classmethod
|
||
|
def convert_if_required(cls, model_path: str, dst_cache_path: str, config: Optional[dict]) -> str:
|
||
|
cfg = cls.build_config(**config)
|
||
|
if isinstance(cfg, cls.CheckpointConfig):
|
||
|
return _convert_ckpt_and_cache(cfg) # TODO: args
|
||
|
else:
|
||
|
return model_path
|
||
|
|
||
|
# all same
|
||
|
class StableDiffusion2BaseModel(StableDiffusion15Model):
|
||
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||
|
# skip StableDiffusion15Model __init__
|
||
|
assert base_model == BaseModelType.StableDiffusion2Base
|
||
|
assert model_type == ModelType.Pipeline
|
||
|
super(StableDiffusion15Model, self).__init__(
|
||
|
model_path=model_path,
|
||
|
base_model=BaseModelType.StableDiffusion2Base,
|
||
|
model_type=ModelType.Pipeline,
|
||
|
)
|
||
|
|
||
|
class StableDiffusion2Model(DiffusersModel):
|
||
|
|
||
|
# TODO: str -> Path?
|
||
|
# overwrite configs
|
||
|
class DiffusersConfig(ModelConfigBase):
|
||
|
format: Literal["diffusers"]
|
||
|
vae: Optional[str] = Field(None)
|
||
|
attention_upscale: bool = Field(True)
|
||
|
|
||
|
class CheckpointConfig(ModelConfigBase):
|
||
|
format: Literal["checkpoint"]
|
||
|
vae: Optional[str] = Field(None)
|
||
|
config: Optional[str] = Field(None)
|
||
|
attention_upscale: bool = Field(True)
|
||
|
|
||
|
|
||
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||
|
# skip StableDiffusion15Model __init__
|
||
|
assert base_model == BaseModelType.StableDiffusion2
|
||
|
assert model_type == ModelType.Pipeline
|
||
|
super().__init__(
|
||
|
model_path=model_path,
|
||
|
base_model=BaseModelType.StableDiffusion2,
|
||
|
model_type=ModelType.Pipeline,
|
||
|
)
|
||
|
|
||
|
|
||
|
# TODO: rework
|
||
|
DictConfig = dict
|
||
|
def _convert_ckpt_and_cache(self, mconfig: DictConfig) -> str:
|
||
|
"""
|
||
|
Convert the checkpoint model indicated in mconfig into a
|
||
|
diffusers, cache it to disk, and return Path to converted
|
||
|
file. If already on disk then just returns Path.
|
||
|
"""
|
||
|
app_config = InvokeAIAppConfig.get_config()
|
||
|
weights = app_config.root_dir / mconfig.path
|
||
|
config_file = app_config.root_dir / mconfig.config
|
||
|
diffusers_path = app_config.converted_ckpts_dir / weights.stem
|
||
|
|
||
|
# return cached version if it exists
|
||
|
if diffusers_path.exists():
|
||
|
return diffusers_path
|
||
|
|
||
|
# TODO: I think that it more correctly to convert with embedded vae
|
||
|
# as if user will delete custom vae he will got not embedded but also custom vae
|
||
|
#vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig)
|
||
|
vae_ckpt_path, vae_model = None, None
|
||
|
|
||
|
# to avoid circular import errors
|
||
|
from ..convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
||
|
with SilenceWarnings():
|
||
|
convert_ckpt_to_diffusers(
|
||
|
weights,
|
||
|
diffusers_path,
|
||
|
extract_ema=True,
|
||
|
original_config_file=config_file,
|
||
|
vae=vae_model,
|
||
|
vae_path=str(app_config.root_dir / vae_ckpt_path) if vae_ckpt_path else None,
|
||
|
scan_needed=True,
|
||
|
)
|
||
|
return diffusers_path
|