InvokeAI/invokeai/backend/stable_diffusion/diffusion/conditioning_data.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

94 lines
3.2 KiB
Python
Raw Normal View History

import dataclasses
import inspect
from dataclasses import dataclass, field
from typing import Any, List, Optional, Union
import torch
from .cross_attention_control import Arguments
@dataclass
class ExtraConditioningInfo:
tokens_count_including_eos_bos: int
cross_attention_control_args: Optional[Arguments] = None
@property
def wants_cross_attention_control(self):
return self.cross_attention_control_args is not None
@dataclass
class BasicConditioningInfo:
embeds: torch.Tensor
extra_conditioning: Optional[ExtraConditioningInfo]
def to(self, device, dtype=None):
self.embeds = self.embeds.to(device=device, dtype=dtype)
return self
@dataclass
class ConditioningFieldData:
conditionings: List[BasicConditioningInfo]
@dataclass
class SDXLConditioningInfo(BasicConditioningInfo):
pooled_embeds: torch.Tensor
add_time_ids: torch.Tensor
def to(self, device, dtype=None):
self.pooled_embeds = self.pooled_embeds.to(device=device, dtype=dtype)
self.add_time_ids = self.add_time_ids.to(device=device, dtype=dtype)
return super().to(device=device, dtype=dtype)
@dataclass
class IPAdapterConditioningInfo:
cond_image_prompt_embeds: torch.Tensor
"""IP-Adapter image encoder conditioning embeddings.
Shape: (num_images, num_tokens, encoding_dim).
"""
uncond_image_prompt_embeds: torch.Tensor
"""IP-Adapter image encoding embeddings to use for unconditional generation.
Shape: (num_images, num_tokens, encoding_dim).
"""
@dataclass
class ConditioningData:
unconditioned_embeddings: BasicConditioningInfo
text_embeddings: BasicConditioningInfo
"""
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf).
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate
images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
"""
guidance_scale: Union[float, List[float]]
""" for models trained using zero-terminal SNR ("ztsnr"), it's suggested to use guidance_rescale_multiplier of 0.7 .
ref [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf)
"""
guidance_rescale_multiplier: float = 0
scheduler_args: dict[str, Any] = field(default_factory=dict)
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]] = None
@property
def dtype(self):
return self.text_embeddings.dtype
def add_scheduler_args_if_applicable(self, scheduler, **kwargs):
scheduler_args = dict(self.scheduler_args)
step_method = inspect.signature(scheduler.step)
for name, value in kwargs.items():
try:
step_method.bind_partial(**{name: value})
except TypeError:
# FIXME: don't silently discard arguments
pass # debug("%s does not accept argument named %r", scheduler, name)
else:
scheduler_args[name] = value
return dataclasses.replace(self, scheduler_args=scheduler_args)