2022-08-10 14:30:49 +00:00
|
|
|
"""SAMPLING ONLY."""
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
from tqdm import tqdm
|
|
|
|
from functools import partial
|
2022-08-31 04:33:23 +00:00
|
|
|
from ldm.dream.devices import choose_torch_device
|
2022-09-25 08:03:28 +00:00
|
|
|
from ldm.models.diffusion.sampler import Sampler
|
|
|
|
from ldm.modules.diffusionmodules.util import noise_like
|
2022-08-10 14:30:49 +00:00
|
|
|
|
|
|
|
|
2022-09-25 08:03:28 +00:00
|
|
|
class PLMSSampler(Sampler):
|
2022-08-31 04:33:23 +00:00
|
|
|
def __init__(self, model, schedule='linear', device=None, **kwargs):
|
2022-09-25 08:03:28 +00:00
|
|
|
super().__init__(model,schedule,model.num_timesteps, device)
|
2022-08-10 14:30:49 +00:00
|
|
|
|
2022-09-25 08:03:28 +00:00
|
|
|
# this is the essential routine
|
2022-08-10 14:30:49 +00:00
|
|
|
@torch.no_grad()
|
2022-09-25 08:03:28 +00:00
|
|
|
def p_sample(
|
|
|
|
self,
|
|
|
|
x, # image, called 'img' elsewhere
|
|
|
|
c, # conditioning, called 'cond' elsewhere
|
|
|
|
t, # timesteps, called 'ts' elsewhere
|
|
|
|
index,
|
|
|
|
repeat_noise=False,
|
|
|
|
use_original_steps=False,
|
|
|
|
quantize_denoised=False,
|
|
|
|
temperature=1.0,
|
|
|
|
noise_dropout=0.0,
|
|
|
|
score_corrector=None,
|
|
|
|
corrector_kwargs=None,
|
|
|
|
unconditional_guidance_scale=1.0,
|
|
|
|
unconditional_conditioning=None,
|
|
|
|
old_eps=[],
|
|
|
|
t_next=None,
|
|
|
|
**kwargs,
|
2022-08-26 07:15:42 +00:00
|
|
|
):
|
2022-08-10 14:30:49 +00:00
|
|
|
b, *_, device = *x.shape, x.device
|
|
|
|
|
|
|
|
def get_model_output(x, t):
|
2022-08-26 07:15:42 +00:00
|
|
|
if (
|
|
|
|
unconditional_conditioning is None
|
|
|
|
or unconditional_guidance_scale == 1.0
|
|
|
|
):
|
2022-08-10 14:30:49 +00:00
|
|
|
e_t = self.model.apply_model(x, t, c)
|
|
|
|
else:
|
|
|
|
x_in = torch.cat([x] * 2)
|
|
|
|
t_in = torch.cat([t] * 2)
|
|
|
|
c_in = torch.cat([unconditional_conditioning, c])
|
2022-08-26 07:15:42 +00:00
|
|
|
e_t_uncond, e_t = self.model.apply_model(
|
|
|
|
x_in, t_in, c_in
|
|
|
|
).chunk(2)
|
|
|
|
e_t = e_t_uncond + unconditional_guidance_scale * (
|
|
|
|
e_t - e_t_uncond
|
|
|
|
)
|
2022-08-10 14:30:49 +00:00
|
|
|
|
|
|
|
if score_corrector is not None:
|
2022-08-26 07:15:42 +00:00
|
|
|
assert self.model.parameterization == 'eps'
|
|
|
|
e_t = score_corrector.modify_score(
|
|
|
|
self.model, e_t, x, t, c, **corrector_kwargs
|
|
|
|
)
|
2022-08-10 14:30:49 +00:00
|
|
|
|
|
|
|
return e_t
|
|
|
|
|
2022-08-26 07:15:42 +00:00
|
|
|
alphas = (
|
|
|
|
self.model.alphas_cumprod
|
|
|
|
if use_original_steps
|
|
|
|
else self.ddim_alphas
|
|
|
|
)
|
|
|
|
alphas_prev = (
|
|
|
|
self.model.alphas_cumprod_prev
|
|
|
|
if use_original_steps
|
|
|
|
else self.ddim_alphas_prev
|
|
|
|
)
|
|
|
|
sqrt_one_minus_alphas = (
|
|
|
|
self.model.sqrt_one_minus_alphas_cumprod
|
|
|
|
if use_original_steps
|
|
|
|
else self.ddim_sqrt_one_minus_alphas
|
|
|
|
)
|
|
|
|
sigmas = (
|
|
|
|
self.model.ddim_sigmas_for_original_num_steps
|
|
|
|
if use_original_steps
|
|
|
|
else self.ddim_sigmas
|
|
|
|
)
|
2022-08-10 14:30:49 +00:00
|
|
|
|
|
|
|
def get_x_prev_and_pred_x0(e_t, index):
|
|
|
|
# select parameters corresponding to the currently considered timestep
|
|
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
2022-08-26 07:15:42 +00:00
|
|
|
a_prev = torch.full(
|
|
|
|
(b, 1, 1, 1), alphas_prev[index], device=device
|
|
|
|
)
|
2022-08-10 14:30:49 +00:00
|
|
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
2022-08-26 07:15:42 +00:00
|
|
|
sqrt_one_minus_at = torch.full(
|
|
|
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
|
|
|
)
|
2022-08-10 14:30:49 +00:00
|
|
|
|
|
|
|
# current prediction for x_0
|
|
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
|
|
|
if quantize_denoised:
|
|
|
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
|
|
|
# direction pointing to x_t
|
2022-08-26 07:15:42 +00:00
|
|
|
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
|
|
|
noise = (
|
|
|
|
sigma_t
|
|
|
|
* noise_like(x.shape, device, repeat_noise)
|
|
|
|
* temperature
|
|
|
|
)
|
|
|
|
if noise_dropout > 0.0:
|
2022-08-10 14:30:49 +00:00
|
|
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
|
|
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
|
|
|
return x_prev, pred_x0
|
|
|
|
|
|
|
|
e_t = get_model_output(x, t)
|
|
|
|
if len(old_eps) == 0:
|
|
|
|
# Pseudo Improved Euler (2nd order)
|
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
|
|
|
e_t_next = get_model_output(x_prev, t_next)
|
|
|
|
e_t_prime = (e_t + e_t_next) / 2
|
|
|
|
elif len(old_eps) == 1:
|
|
|
|
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
|
|
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
|
|
|
elif len(old_eps) == 2:
|
|
|
|
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
|
|
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
|
|
|
elif len(old_eps) >= 3:
|
|
|
|
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
2022-08-26 07:15:42 +00:00
|
|
|
e_t_prime = (
|
|
|
|
55 * e_t
|
|
|
|
- 59 * old_eps[-1]
|
|
|
|
+ 37 * old_eps[-2]
|
|
|
|
- 9 * old_eps[-3]
|
|
|
|
) / 24
|
2022-08-10 14:30:49 +00:00
|
|
|
|
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
|
|
|
|
|
|
|
return x_prev, pred_x0, e_t
|