InvokeAI/invokeai/backend/model_management/models/vae.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

180 lines
5.4 KiB
Python
Raw Normal View History

2023-06-11 01:49:09 +00:00
import os
2023-06-20 00:30:09 +00:00
from enum import Enum
from pathlib import Path
2023-07-31 16:08:46 +00:00
from typing import Optional
import safetensors
import torch
from omegaconf import OmegaConf
from invokeai.app.services.config import InvokeAIAppConfig
2023-08-18 15:13:28 +00:00
2023-06-11 01:49:09 +00:00
from .base import (
2023-08-18 15:13:28 +00:00
BaseModelType,
EmptyConfigLoader,
InvalidModelException,
2023-06-11 01:49:09 +00:00
ModelBase,
ModelConfigBase,
2023-08-18 15:13:28 +00:00
ModelNotFoundException,
2023-06-11 01:49:09 +00:00
ModelType,
ModelVariantType,
2023-08-18 15:13:28 +00:00
SubModelType,
2023-06-11 01:49:09 +00:00
calc_model_size_by_data,
2023-08-18 15:13:28 +00:00
calc_model_size_by_fs,
classproperty,
2023-06-11 01:49:09 +00:00
)
2023-07-27 14:54:01 +00:00
2023-06-20 00:30:09 +00:00
class VaeModelFormat(str, Enum):
Checkpoint = "checkpoint"
Diffusers = "diffusers"
2023-07-27 14:54:01 +00:00
2023-06-11 01:49:09 +00:00
class VaeModel(ModelBase):
# vae_class: Type
# model_size: int
2023-06-17 14:15:36 +00:00
class Config(ModelConfigBase):
2023-06-20 00:30:09 +00:00
model_format: VaeModelFormat
2023-06-11 01:49:09 +00:00
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.Vae
super().__init__(model_path, base_model, model_type)
try:
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
# config = json.loads(os.path.join(self.model_path, "config.json"))
2023-08-17 22:45:25 +00:00
except Exception:
2023-06-11 01:49:09 +00:00
raise Exception("Invalid vae model! (config.json not found or invalid)")
try:
vae_class_name = config.get("_class_name", "AutoencoderKL")
self.vae_class = self._hf_definition_to_type(["diffusers", vae_class_name])
self.model_size = calc_model_size_by_fs(self.model_path)
2023-08-17 22:45:25 +00:00
except Exception:
2023-06-11 01:49:09 +00:00
raise Exception("Invalid vae model! (Unkown vae type)")
def get_size(self, child_type: Optional[SubModelType] = None):
if child_type is not None:
raise Exception("There is no child models in vae model")
return self.model_size
def get_model(
self,
torch_dtype: Optional[torch.dtype],
child_type: Optional[SubModelType] = None,
):
if child_type is not None:
raise Exception("There is no child models in vae model")
model = self.vae_class.from_pretrained(
self.model_path,
torch_dtype=torch_dtype,
)
# calc more accurate size
self.model_size = calc_model_size_by_data(model)
return model
@classproperty
2023-06-11 01:49:09 +00:00
def save_to_config(cls) -> bool:
return False
@classmethod
def detect_format(cls, path: str):
2023-07-08 01:09:10 +00:00
if not os.path.exists(path):
2023-07-31 16:08:46 +00:00
raise ModelNotFoundException(f"Does not exist as local file: {path}")
2023-07-08 01:09:10 +00:00
2023-06-11 01:49:09 +00:00
if os.path.isdir(path):
2023-07-08 01:09:10 +00:00
if os.path.exists(os.path.join(path, "config.json")):
return VaeModelFormat.Diffusers
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return VaeModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {path}")
2023-06-11 01:49:09 +00:00
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase, # empty config or config of parent model
base_model: BaseModelType,
) -> str:
2023-06-20 00:30:09 +00:00
if cls.detect_format(model_path) == VaeModelFormat.Checkpoint:
return _convert_vae_ckpt_and_cache(
weights_path=model_path,
output_path=output_path,
base_model=base_model,
model_config=config,
)
2023-06-11 01:49:09 +00:00
else:
return model_path
2023-07-27 14:54:01 +00:00
2023-06-11 01:49:09 +00:00
# TODO: rework
def _convert_vae_ckpt_and_cache(
weights_path: str,
output_path: str,
base_model: BaseModelType,
model_config: ModelConfigBase,
) -> str:
2023-06-11 01:49:09 +00:00
"""
Convert the VAE indicated in mconfig into a diffusers AutoencoderKL
object, cache it to disk, and return Path to converted
file. If already on disk then just returns Path.
"""
app_config = InvokeAIAppConfig.get_config()
weights_path = app_config.root_dir / weights_path
output_path = Path(output_path)
"""
this size used only in when tiling enabled to separate input in tiles
sizes in configs from stable diffusion githubs(1 and 2) set to 256
on huggingface it:
1.5 - 512
1.5-inpainting - 256
2-inpainting - 512
2-depth - 256
2-base - 512
2 - 768
2.1-base - 768
2.1 - 768
"""
image_size = 512
2023-07-27 14:54:01 +00:00
2023-06-11 01:49:09 +00:00
# return cached version if it exists
if output_path.exists():
return output_path
if base_model in {BaseModelType.StableDiffusion1, BaseModelType.StableDiffusion2}:
from .stable_diffusion import _select_ckpt_config
2023-07-27 14:54:01 +00:00
# all sd models use same vae settings
config_file = _select_ckpt_config(base_model, ModelVariantType.Normal)
else:
raise Exception(f"Vae conversion not supported for model type: {base_model}")
2023-06-11 01:49:09 +00:00
# this avoids circular import error
from ..convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
2023-07-27 14:54:01 +00:00
if weights_path.suffix == ".safetensors":
checkpoint = safetensors.torch.load_file(weights_path, device="cpu")
2023-06-11 01:49:09 +00:00
else:
checkpoint = torch.load(weights_path, map_location="cpu")
2023-06-11 01:49:09 +00:00
# sometimes weights are hidden under "state_dict", and sometimes not
if "state_dict" in checkpoint:
checkpoint = checkpoint["state_dict"]
config = OmegaConf.load(app_config.root_path / config_file)
2023-06-11 01:49:09 +00:00
vae_model = convert_ldm_vae_to_diffusers(
checkpoint=checkpoint,
vae_config=config,
image_size=image_size,
2023-06-11 01:49:09 +00:00
)
vae_model.save_pretrained(output_path, safe_serialization=True)
return output_path