InvokeAI/scripts/orig_scripts/txt2img.py

317 lines
10 KiB
Python
Raw Normal View History

2023-08-17 22:45:25 +00:00
import argparse
import os
2022-08-10 14:30:49 +00:00
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
from pytorch_lightning import seed_everything
from torch import autocast
2023-08-17 22:45:25 +00:00
from contextlib import nullcontext
2022-08-10 14:30:49 +00:00
2022-08-21 03:28:29 +00:00
import k_diffusion as K
import torch.nn as nn
2023-07-27 14:54:01 +00:00
from ldm.util import instantiate_from_config
2022-08-10 14:30:49 +00:00
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
2023-07-27 14:54:01 +00:00
from ldm.invoke.devices import choose_torch_device
2022-08-10 14:30:49 +00:00
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.to(choose_torch_device())
2022-08-10 14:30:49 +00:00
model.eval()
return model
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
2023-07-27 14:54:01 +00:00
help="the prompt to render",
2022-08-10 14:30:49 +00:00
)
parser.add_argument(
2023-07-27 14:54:01 +00:00
"--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples"
2022-08-10 14:30:49 +00:00
)
parser.add_argument(
"--skip_grid",
2023-07-27 14:54:01 +00:00
action="store_true",
2022-08-10 14:30:49 +00:00
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
2023-07-27 14:54:01 +00:00
action="store_true",
2022-08-10 14:30:49 +00:00
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
2023-07-27 14:54:01 +00:00
action="store_true",
2022-08-10 14:30:49 +00:00
help="use plms sampling",
)
2022-08-21 03:28:29 +00:00
parser.add_argument(
"--klms",
2023-07-27 14:54:01 +00:00
action="store_true",
2022-08-21 03:28:29 +00:00
help="use klms sampling",
)
2022-08-10 14:30:49 +00:00
parser.add_argument(
"--laion400m",
2023-07-27 14:54:01 +00:00
action="store_true",
2022-08-10 14:30:49 +00:00
help="uses the LAION400M model",
)
parser.add_argument(
"--fixed_code",
2023-07-27 14:54:01 +00:00
action="store_true",
2022-08-10 14:30:49 +00:00
help="if enabled, uses the same starting code across samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=2,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=3,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v1-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/ldm/stable-diffusion-v1/model.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
2023-07-27 14:54:01 +00:00
"--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast"
2022-08-10 14:30:49 +00:00
)
opt = parser.parse_args()
if opt.laion400m:
print("Falling back to LAION 400M model...")
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
opt.ckpt = "models/ldm/text2img-large/model.ckpt"
opt.outdir = "outputs/txt2img-samples-laion400m"
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
seed_everything(opt.seed)
device = torch.device(choose_torch_device())
2023-07-27 14:54:01 +00:00
model = model.to(device)
2022-08-10 14:30:49 +00:00
2023-07-27 14:54:01 +00:00
# for klms
2022-08-21 03:28:29 +00:00
model_wrap = K.external.CompVisDenoiser(model)
2023-07-27 14:54:01 +00:00
2022-08-21 03:28:29 +00:00
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
2022-08-10 14:30:49 +00:00
if opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
2023-07-27 14:54:01 +00:00
if len(data) >= batch_size:
data = list(chunk(data, batch_size))
else:
2023-07-27 14:54:01 +00:00
while len(data) < batch_size:
data.append(data[-1])
data = [data]
2022-08-10 14:30:49 +00:00
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
start_code = None
if opt.fixed_code:
shape = [opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f]
2023-07-27 14:54:01 +00:00
if device.type == "mps":
start_code = torch.randn(shape, device="cpu").to(device)
else:
torch.randn(shape, device=device)
2022-08-10 14:30:49 +00:00
2023-07-27 14:54:01 +00:00
precision_scope = autocast if opt.precision == "autocast" else nullcontext
if device.type in ["mps", "cpu"]:
precision_scope = nullcontext # have to use f32 on mps
2022-08-10 14:30:49 +00:00
with torch.no_grad():
with precision_scope(device.type):
2022-08-10 14:30:49 +00:00
with model.ema_scope():
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
2022-08-10 14:30:49 +00:00
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
2022-08-21 03:28:29 +00:00
if not opt.klms:
2023-07-27 14:54:01 +00:00
samples_ddim, _ = sampler.sample(
S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code,
)
2022-08-21 03:28:29 +00:00
else:
sigmas = model_wrap.get_sigmas(opt.ddim_steps)
if start_code:
x = start_code
else:
2023-07-27 14:54:01 +00:00
x = torch.randn([opt.n_samples, *shape], device=device) * sigmas[0] # for GPU draw
2022-08-21 03:28:29 +00:00
model_wrap_cfg = CFGDenoiser(model_wrap)
2023-07-27 14:54:01 +00:00
extra_args = {"cond": c, "uncond": uc, "cond_scale": opt.scale}
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args=extra_args)
2022-08-10 14:30:49 +00:00
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
if not opt.skip_save:
for x_sample in x_samples_ddim:
2023-07-27 14:54:01 +00:00
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c")
2022-08-10 14:30:49 +00:00
Image.fromarray(x_sample.astype(np.uint8)).save(
2023-07-27 14:54:01 +00:00
os.path.join(sample_path, f"{base_count:05}.png")
)
2022-08-10 14:30:49 +00:00
base_count += 1
if not opt.skip_grid:
all_samples.append(x_samples_ddim)
if not opt.skip_grid:
# additionally, save as grid
grid = torch.stack(all_samples, 0)
2023-07-27 14:54:01 +00:00
grid = rearrange(grid, "n b c h w -> (n b) c h w")
2022-08-10 14:30:49 +00:00
grid = make_grid(grid, nrow=n_rows)
# to image
2023-07-27 14:54:01 +00:00
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f"grid-{grid_count:04}.png"))
2022-08-10 14:30:49 +00:00
grid_count += 1
2023-07-27 14:54:01 +00:00
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.")
2022-08-10 14:30:49 +00:00
if __name__ == "__main__":
main()