2022-09-16 23:35:50 +00:00
# Before you begin
2022-09-09 20:46:14 +00:00
2022-09-23 10:20:05 +00:00
- For end users: Install Stable Diffusion locally using the instructions for
your OS.
- For developers: For container-related development tasks or for enabling easy
deployment to other environments (on-premises or cloud), follow these
instructions. For general use, install locally to leverage your machine's GPU.
2022-09-09 20:28:15 +00:00
2022-09-16 23:35:50 +00:00
# Why containers?
2022-09-09 20:28:15 +00:00
2022-09-23 10:20:05 +00:00
They provide a flexible, reliable way to build and deploy Stable Diffusion.
You'll also use a Docker volume to store the largest model files and image
outputs as a first step in decoupling storage and compute. Future enhancements
can do this for other assets. See [Processes ](https://12factor.net/processes )
under the Twelve-Factor App methodology for details on why running applications
in such a stateless fashion is important.
2022-09-10 04:15:09 +00:00
2022-09-23 10:20:05 +00:00
You can specify the target platform when building the image and running the
container. You'll also need to specify the Stable Diffusion requirements file
that matches the container's OS and the architecture it will run on.
2022-09-09 20:28:15 +00:00
2022-09-23 10:20:05 +00:00
Developers on Apple silicon (M1/M2): You
[can't access your GPU cores from Docker containers ](https://github.com/pytorch/pytorch/issues/81224 )
and performance is reduced compared with running it directly on macOS but for
development purposes it's fine. Once you're done with development tasks on your
laptop you can build for the target platform and architecture and deploy to
another environment with NVIDIA GPUs on-premises or in the cloud.
2022-09-11 20:57:32 +00:00
2022-09-23 10:20:05 +00:00
# Installation on a Linux container
2022-09-12 00:09:05 +00:00
2022-09-16 23:35:50 +00:00
## Prerequisites
2022-09-12 00:09:05 +00:00
2022-09-23 10:20:05 +00:00
### Get the data files
2022-09-09 20:28:15 +00:00
2022-09-23 10:20:05 +00:00
Go to
[Hugging Face ](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original ),
and click "Access repository" to Download the model file `sd-v1-4.ckpt` (~4 GB)
to `~/Downloads` . You'll need to create an account but it's quick and free.
2022-09-16 23:35:50 +00:00
Also download the face restoration model.
2022-09-23 10:20:05 +00:00
2022-09-16 23:35:50 +00:00
```Shell
cd ~/Downloads
2022-09-23 10:20:05 +00:00
wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
2022-09-16 23:35:50 +00:00
```
2022-09-23 10:20:05 +00:00
### Install [Docker](https://github.com/santisbon/guides#docker)
On the Docker Desktop app, go to Preferences, Resources, Advanced. Increase the
CPUs and Memory to avoid this
[Issue ](https://github.com/invoke-ai/InvokeAI/issues/342 ). You may need to
increase Swap and Disk image size too.
2022-09-09 20:28:15 +00:00
2022-09-16 23:35:50 +00:00
## Setup
2022-09-23 10:20:05 +00:00
Set the fork you want to use and other variables.
2022-09-16 23:35:50 +00:00
```Shell
TAG_STABLE_DIFFUSION="santisbon/stable-diffusion"
PLATFORM="linux/arm64"
GITHUB_STABLE_DIFFUSION="-b orig-gfpgan https://github.com/santisbon/stable-diffusion.git"
REQS_STABLE_DIFFUSION="requirements-linux-arm64.txt"
CONDA_SUBDIR="osx-arm64"
echo $TAG_STABLE_DIFFUSION
echo $PLATFORM
echo $GITHUB_STABLE_DIFFUSION
echo $REQS_STABLE_DIFFUSION
echo $CONDA_SUBDIR
2022-09-09 20:28:15 +00:00
```
2022-09-16 23:35:50 +00:00
Create a Docker volume for the downloaded model files.
2022-09-23 10:20:05 +00:00
2022-09-16 23:35:50 +00:00
```Shell
2022-09-09 20:28:15 +00:00
docker volume create my-vol
```
2022-09-23 10:20:05 +00:00
Copy the data files to the Docker volume using a lightweight Linux container.
We'll need the models at run time. You just need to create the container with
the mountpoint; no need to run this dummy container.
2022-09-09 20:28:15 +00:00
```Shell
2022-09-16 23:35:50 +00:00
cd ~/Downloads # or wherever you saved the files
2022-09-23 10:20:05 +00:00
docker create --platform $PLATFORM --name dummy --mount source=my-vol,target=/data alpine
2022-09-10 18:56:18 +00:00
2022-09-09 20:28:15 +00:00
docker cp sd-v1-4.ckpt dummy:/data
2022-09-23 10:20:05 +00:00
docker cp GFPGANv1.4.pth dummy:/data
2022-09-09 20:28:15 +00:00
```
2022-09-23 10:20:05 +00:00
Get the repo and download the Miniconda installer (we'll need it at build time).
Replace the URL with the version matching your container OS and the architecture
it will run on.
2022-09-10 18:56:18 +00:00
```Shell
2022-09-10 23:52:12 +00:00
cd ~
2022-09-10 18:56:18 +00:00
git clone $GITHUB_STABLE_DIFFUSION
2022-09-11 14:47:54 +00:00
cd stable-diffusion/docker-build
2022-09-10 18:56:18 +00:00
chmod +x entrypoint.sh
2022-09-11 03:45:08 +00:00
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh -O anaconda.sh & & chmod +x anaconda.sh
2022-09-10 18:56:18 +00:00
```
2022-09-23 10:20:05 +00:00
Build the Docker image. Give it any tag `-t` that you want.
Choose the Linux container's host platform: x86-64/Intel is `amd64` . Apple
silicon is `arm64` . If deploying the container to the cloud to leverage powerful
GPU instances you'll be on amd64 hardware but if you're just trying this out
locally on Apple silicon choose arm64.
The application uses libraries that need to match the host environment so use
the appropriate requirements file.
Tip: Check that your shell session has the env variables set above.
2022-09-10 18:56:18 +00:00
```Shell
2022-09-16 23:35:50 +00:00
docker build -t $TAG_STABLE_DIFFUSION \
--platform $PLATFORM \
2022-09-10 18:56:18 +00:00
--build-arg gsd=$GITHUB_STABLE_DIFFUSION \
2022-09-16 23:35:50 +00:00
--build-arg rsd=$REQS_STABLE_DIFFUSION \
--build-arg cs=$CONDA_SUBDIR \
2022-09-10 18:56:18 +00:00
.
```
2022-09-16 23:35:50 +00:00
Run a container using your built image.
Tip: Make sure you've created and populated the Docker volume (above).
2022-09-23 10:20:05 +00:00
2022-09-09 20:28:15 +00:00
```Shell
docker run -it \
2022-09-10 18:56:18 +00:00
--rm \
2022-09-16 23:35:50 +00:00
--platform $PLATFORM \
2022-09-09 20:28:15 +00:00
--name stable-diffusion \
--hostname stable-diffusion \
--mount source=my-vol,target=/data \
2022-09-16 23:35:50 +00:00
$TAG_STABLE_DIFFUSION
2022-09-09 20:28:15 +00:00
```
2022-09-16 23:35:50 +00:00
# Usage (time to have fun)
2022-09-09 20:28:15 +00:00
## Startup
2022-09-23 10:20:05 +00:00
2022-10-08 13:32:06 +00:00
If you're on a **Linux container** the `invoke` script is **automatically
2022-09-23 10:20:05 +00:00
started** and the output dir set to the Docker volume you created earlier.
2022-09-09 20:28:15 +00:00
2022-09-12 03:11:34 +00:00
If you're **directly on macOS follow these startup instructions** .
2022-09-23 10:20:05 +00:00
With the Conda environment activated (`conda activate ldm`), run the interactive
interface that combines the functionality of the original scripts `txt2img` and
`img2img` :
Use the more accurate but VRAM-intensive full precision math because
half-precision requires autocast and won't work.
By default the images are saved in `outputs/img-samples/` .
2022-09-09 20:28:15 +00:00
```Shell
2022-10-08 13:32:06 +00:00
python3 scripts/invoke.py --full_precision
2022-09-09 20:28:15 +00:00
```
You'll get the script's prompt. You can see available options or quit.
2022-09-23 10:20:05 +00:00
2022-09-09 20:28:15 +00:00
```Shell
2022-10-08 13:32:06 +00:00
invoke> -h
invoke> q
2022-09-09 20:28:15 +00:00
```
## Text to Image
2022-09-23 10:20:05 +00:00
For quick (but bad) image results test with 5 steps (default 50) and 1 sample
image. This will let you know that everything is set up correctly.
2022-09-10 04:15:09 +00:00
Then increase steps to 100 or more for good (but slower) results.
2022-09-09 20:28:15 +00:00
The prompt can be in quotes or not.
2022-09-23 10:20:05 +00:00
2022-09-10 04:15:09 +00:00
```Shell
2022-10-08 13:32:06 +00:00
invoke> The hulk fighting with sheldon cooper -s5 -n1
invoke> "woman closeup highly detailed" -s 150
2022-09-16 23:35:50 +00:00
# Reuse previous seed and apply face restoration
2022-10-08 13:32:06 +00:00
invoke> "woman closeup highly detailed" --steps 150 --seed -1 -G 0.75
2022-09-09 20:28:15 +00:00
```
2022-09-12 03:11:34 +00:00
2022-09-23 10:20:05 +00:00
You'll need to experiment to see if face restoration is making it better or
worse for your specific prompt.
2022-09-09 20:28:15 +00:00
2022-09-23 10:20:05 +00:00
If you're on a container the output is set to the Docker volume. You can copy it
wherever you want.
2022-09-10 04:15:09 +00:00
You can download it from the Docker Desktop app, Volumes, my-vol, data.
2022-09-23 10:20:05 +00:00
Or you can copy it from your Mac terminal. Keep in mind `docker cp` can't expand
`*.png` so you'll need to specify the image file name.
On your host Mac (you can use the name of any container that mounted the
volume):
2022-09-12 03:11:34 +00:00
2022-09-09 20:28:15 +00:00
```Shell
2022-09-23 10:20:05 +00:00
docker cp dummy:/data/000001.928403745.png /Users/< your-user > /Pictures
2022-09-09 20:28:15 +00:00
```
## Image to Image
2022-09-12 03:11:34 +00:00
2022-09-23 10:20:05 +00:00
You can also do text-guided image-to-image translation. For example, turning a
sketch into a detailed drawing.
`strength` is a value between 0.0 and 1.0 that controls the amount of noise that
is added to the input image. Values that approach 1.0 allow for lots of
variations but will also produce images that are not semantically consistent
with the input. 0.0 preserves image exactly, 1.0 replaces it completely.
2022-09-12 03:11:34 +00:00
2022-09-23 10:20:05 +00:00
Make sure your input image size dimensions are multiples of 64 e.g. 512x512.
Otherwise you'll get `Error: product of dimension sizes > 2**31'` . If you still
get the error
[try a different size ](https://support.apple.com/guide/preview/resize-rotate-or-flip-an-image-prvw2015/mac#:~:text=image's%20file%20size-,In%20the%20Preview%20app%20on%20your%20Mac%2C%20open%20the%20file,is%20shown%20at%20the%20bottom. )
like 512x256.
2022-09-09 20:28:15 +00:00
2022-09-12 03:11:34 +00:00
If you're on a Docker container, copy your input image into the Docker volume
2022-09-23 10:20:05 +00:00
2022-09-09 20:28:15 +00:00
```Shell
2022-09-10 04:15:09 +00:00
docker cp /Users/< your-user > /Pictures/sketch-mountains-input.jpg dummy:/data/
2022-09-09 20:28:15 +00:00
```
2022-10-08 13:32:06 +00:00
Try it out generating an image (or more). The `invoke` script needs absolute
2022-09-23 10:20:05 +00:00
paths to find the image so don't use `~` .
2022-09-12 03:11:34 +00:00
If you're on your Mac
2022-09-23 10:20:05 +00:00
```Shell
2022-10-08 13:32:06 +00:00
invoke> "A fantasy landscape, trending on artstation" -I /Users/< your-user > /Pictures/sketch-mountains-input.jpg --strength 0.75 --steps 100 -n4
2022-09-12 03:11:34 +00:00
```
2022-09-23 10:20:05 +00:00
2022-09-12 03:11:34 +00:00
If you're on a Linux container on your Mac
2022-09-23 10:20:05 +00:00
2022-09-09 20:28:15 +00:00
```Shell
2022-10-08 13:32:06 +00:00
invoke> "A fantasy landscape, trending on artstation" -I /data/sketch-mountains-input.jpg --strength 0.75 --steps 50 -n1
2022-09-09 20:28:15 +00:00
```
## Web Interface
2022-09-23 10:20:05 +00:00
2022-10-08 13:32:06 +00:00
You can use the `invoke` script with a graphical web interface. Start the web
2022-09-23 10:20:05 +00:00
server with:
2022-09-09 20:28:15 +00:00
```Shell
2022-10-08 13:32:06 +00:00
python3 scripts/invoke.py --full_precision --web
2022-09-09 20:28:15 +00:00
```
2022-09-23 10:20:05 +00:00
If it's running on your Mac point your Mac web browser to http://127.0.0.1:9090
2022-09-10 04:15:09 +00:00
Press Control-C at the command line to stop the web server.
2022-09-09 20:28:15 +00:00
## Notes
Some text you can add at the end of the prompt to make it very pretty:
2022-09-23 10:20:05 +00:00
2022-09-09 20:28:15 +00:00
```Shell
2022-09-09 20:46:14 +00:00
cinematic photo, highly detailed, cinematic lighting, ultra-detailed, ultrarealistic, photorealism, Octane Rendering, cyberpunk lights, Hyper Detail, 8K, HD, Unreal Engine, V-Ray, full hd, cyberpunk, abstract, 3d octane render + 4k UHD + immense detail + dramatic lighting + well lit + black, purple, blue, pink, cerulean, teal, metallic colours, + fine details, ultra photoreal, photographic, concept art, cinematic composition, rule of thirds, mysterious, eerie, photorealism, breathtaking detailed, painting art deco pattern, by hsiao, ron cheng, john james audubon, bizarre compositions, exquisite detail, extremely moody lighting, painted by greg rutkowski makoto shinkai takashi takeuchi studio ghibli, akihiko yoshida
2022-09-09 20:28:15 +00:00
```
The original scripts should work as well.
2022-09-23 10:20:05 +00:00
2022-09-09 20:28:15 +00:00
```Shell
python3 scripts/orig_scripts/txt2img.py --help
python3 scripts/orig_scripts/txt2img.py --ddim_steps 100 --n_iter 1 --n_samples 1 --plms --prompt "new born baby kitten. Hyper Detail, Octane Rendering, Unreal Engine, V-Ray"
python3 scripts/orig_scripts/txt2img.py --ddim_steps 5 --n_iter 1 --n_samples 1 --plms --prompt "ocean" # or --klms
2022-09-23 10:20:05 +00:00
```