InvokeAI/invokeai/app/invocations/flux_text_to_image.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

145 lines
5.4 KiB
Python
Raw Normal View History

import torch
from einops import rearrange
from PIL import Image
2024-08-22 15:29:59 +00:00
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
Input,
InputField,
WithBoard,
WithMetadata,
)
2024-08-15 14:27:42 +00:00
from invokeai.app.invocations.model import TransformerField, VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.flux.sampling import denoise, get_noise, get_schedule, prepare_latent_img_patches, unpack
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
2024-08-16 20:22:49 +00:00
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_text_to_image",
title="FLUX Text to Image",
tags=["image", "flux"],
category="image",
version="1.0.0",
2024-08-22 15:29:59 +00:00
classification=Classification.Prototype,
)
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Text-to-image generation using a FLUX model."""
transformer: TransformerField = InputField(
2024-08-21 13:45:22 +00:00
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
2024-08-12 18:04:23 +00:00
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
positive_text_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
2024-08-21 13:45:22 +00:00
num_steps: int = InputField(
default=4, description="Number of diffusion steps. Recommend values are schnell: 4, dev: 50."
)
guidance: float = InputField(
default=4.0,
2024-08-21 13:45:22 +00:00
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the conditioning data.
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
latents = self._run_diffusion(context, flux_conditioning.clip_embeds, flux_conditioning.t5_embeds)
image = self._run_vae_decoding(context, latents)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _run_diffusion(
self,
context: InvocationContext,
clip_embeddings: torch.Tensor,
t5_embeddings: torch.Tensor,
):
transformer_info = context.models.load(self.transformer.transformer)
inference_dtype = torch.bfloat16
# Prepare input noise.
x = get_noise(
num_samples=1,
height=self.height,
width=self.width,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
seed=self.seed,
)
img, img_ids = prepare_latent_img_patches(x)
2024-08-22 16:03:54 +00:00
is_schnell = "schnell" in transformer_info.config.config_path
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=img.shape[1],
shift=not is_schnell,
)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
2024-08-07 22:10:09 +00:00
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
# if the cache is not empty.
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
with transformer_info as transformer:
assert isinstance(transformer, Flux)
2024-08-16 20:22:49 +00:00
x = denoise(
model=transformer,
img=img,
img_ids=img_ids,
txt=t5_embeddings,
txt_ids=txt_ids,
vec=clip_embeddings,
timesteps=timesteps,
guidance=self.guidance,
)
2024-08-16 20:22:49 +00:00
x = unpack(x.float(), self.height, self.width)
return x
def _run_vae_decoding(
self,
context: InvocationContext,
latents: torch.Tensor,
) -> Image.Image:
vae_info = context.models.load(self.vae.vae)
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
# TODO(ryand): Test that this works with both float16 and bfloat16.
# with torch.autocast(device_type=latents.device.type, dtype=torch.float32):
vae.to(torch.float32)
latents.to(torch.float32)
img = vae.decode(latents)
img = img.clamp(-1, 1)
2024-08-16 20:22:49 +00:00
img = rearrange(img[0], "c h w -> h w c")
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
return img_pil