InvokeAI/ldm/models/diffusion/ddpm.py

2272 lines
79 KiB
Python
Raw Normal View History

2021-12-21 02:23:41 +00:00
"""
wild mixture of
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
https://github.com/CompVis/taming-transformers
-- merci
"""
import torch
2022-08-23 22:26:28 +00:00
2021-12-21 02:23:41 +00:00
import torch.nn as nn
2022-08-23 22:26:28 +00:00
import os
2021-12-21 02:23:41 +00:00
import numpy as np
import pytorch_lightning as pl
from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange, repeat
from contextlib import contextmanager
from functools import partial
from tqdm import tqdm
from torchvision.utils import make_grid
from pytorch_lightning.utilities.distributed import rank_zero_only
from omegaconf import ListConfig
import urllib
2021-12-21 02:23:41 +00:00
use 🧨diffusers model (#1583) * initial commit of DiffusionPipeline class * spike: proof of concept using diffusers for txt2img * doc: type hints for Generator * refactor(model_cache): factor out load_ckpt * model_cache: add ability to load a diffusers model pipeline and update associated things in Generate & Generator to not instantly fail when that happens * model_cache: fix model default image dimensions * txt2img: support switching diffusers schedulers * diffusers: let the scheduler do its scaling of the initial latents Remove IPNDM scheduler; it is not behaving. * web server: update image_progress callback for diffusers data * diffusers: restore prompt weighting feature * diffusers: fix set-sampler error following model switch * diffusers: use InvokeAIDiffuserComponent for conditioning * cross_attention_control: stub (no-op) implementations for diffusers * model_cache: let offload_model work with DiffusionPipeline, sorta. * models.yaml.example: add diffusers-format model, set as default * test-invoke-conda: use diffusers-format model test-invoke-conda: put huggingface-token where the library can use it * environment-mac: upgrade to diffusers 0.7 (from 0.6) this was already done for linux; mac must have been lost in the merge. * preload_models: explicitly load diffusers models In non-interactive mode too, as long as you're logged in. * fix(model_cache): don't check `model.config` in diffusers format clean-up from recent merge. * diffusers integration: support img2img * dev: upgrade to diffusers 0.8 (from 0.7.1) We get to remove some code by using methods that were factored out in the base class. * refactor: remove backported img2img.get_timesteps now that we can use it directly from diffusers 0.8.1 * ci: use diffusers model * dev: upgrade to diffusers 0.9 (from 0.8.1) * lint: correct annotations for Python 3.9. * lint: correct AttributeError.name reference for Python 3.9. * CI: prefer diffusers-1.4 because it no longer requires a token The RunwayML models still do. * build: there's yet another place to update requirements? * configure: try to download models even without token Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.) * configure: add troubleshooting info for config-not-found * fix(configure): prepend root to config path * fix(configure): remove second `default: true` from models example * CI: simplify test-on-push logic now that we don't need secrets The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks. * create an embedding_manager for diffusers * internal: avoid importing diffusers DummyObject see https://github.com/huggingface/diffusers/issues/1479 * fix "config attributes…not expected" diffusers warnings. * fix deprecated scheduler construction * work around an apparent MPS torch bug that causes conditioning to have no effect * 🚧 post-rebase repair * preliminary support for outpainting (no masking yet) * monkey-patch diffusers.attention and use Invoke lowvram code * add always_use_cpu arg to bypass MPS * add cross-attention control support to diffusers (fails on MPS) For unknown reasons MPS produces garbage output with .swap(). Use --always_use_cpu arg to invoke.py for now to test this code on MPS. * diffusers support for the inpainting model * fix debug_image to not crash with non-RGB images. * inpainting for the normal model [WIP] This seems to be performing well until the LAST STEP, at which point it dissolves to confetti. * fix off-by-one bug in cross-attention-control (#1774) prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness). based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly. * refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary * inpainting for the normal model. I think it works this time. * diffusers: reset num_vectors_per_token sync with 44a00555718f1df173c60da0ed646cf700e29537 * diffusers: txt2img2img (hires_fix) with so much slicing and dicing of pipeline methods to stitch them together * refactor(diffusers): reduce some code duplication amongst the different tasks * fixup! refactor(diffusers): reduce some code duplication amongst the different tasks * diffusers: enable DPMSolver++ scheduler * diffusers: upgrade to diffusers 0.10, add Heun scheduler * diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers * CI: default to diffusers-1.5 now that runwayml token requirement is gone * diffusers: update to 0.10 (and transformers to 4.25) * diffusers: use xformers when available diffusers no longer auto-enables this as of 0.10.2. * diffusers: make masked img2img behave better with multi-step schedulers re-randomizing the noise each step was confusing them. * diffusers: work more better with more models. fixed relative path problem with local models. fixed models on hub not always having a `fp16` branch. * diffusers: stopgap fix for attention_maps_callback crash after recent merge * fixup import merge conflicts correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b * test: add tests/inpainting inputs for masked img2img * diffusers(AddsMaskedGuidance): partial fix for k-schedulers Prevents them from crashing, but results are still hot garbage. * fix --safety_checker arg parsing and add note to diffusers loader about where safety checker gets called * generate: fix import error * CI: don't try to read the old init location * diffusers: support loading an alternate VAE * CI: remove sh-syntax if-statement so it doesn't crash powershell * CI: fold strings in yaml because backslash is not line-continuation in powershell * attention maps callback stuff for diffusers * build: fix syntax error in environment-mac * diffusers: add INITIAL_MODELS with diffusers-compatible repos * re-enable the embedding manager; closes #1778 * Squashed commit of the following: commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 15:43:07 2022 +0100 import new load handling from EmbeddingManager and cleanup commit c4abe91a5ba0d415b45bf734068385668b7a66e6 Merge: 032e856e 1efc6397 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 15:09:53 2022 +0100 Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager commit 032e856eefb3bbc39534f5daafd25764bcfcef8b Merge: 8b4f0fe9 bc515e24 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 15:08:01 2022 +0100 Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager commit 1efc6397fc6e61c1aff4b0258b93089d61de5955 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 15:04:28 2022 +0100 cleanup and add performance notes commit e400f804ac471a0ca2ba432fd658778b20c7bdab Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 14:45:07 2022 +0100 fix bug and update unit tests commit deb9ae0ae1016750e93ce8275734061f7285a231 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 14:28:29 2022 +0100 textual inversion manager seems to work commit 162e02505dec777e91a983c4d0fb52e950d25ff0 Merge: cbad4583 12769b3d Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 11:58:03 2022 +0100 Merge branch 'main' into feature_textual_inversion_mgr commit cbad45836c6aace6871a90f2621a953f49433131 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 11:54:10 2022 +0100 use position embeddings commit 070344c69b0e0db340a183857d0a787b348681d3 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 11:53:47 2022 +0100 Don't crash CLI on exceptions commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 11:11:55 2022 +0100 add missing position_embeddings commit 12769b3d3562ef71e0f54946b532ad077e10043c Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 13:33:25 2022 +0100 debugging why it don't work commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 13:21:33 2022 +0100 debugging why it don't work commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1 Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 12:48:38 2022 +0100 use TextualInversionManager in place of embeddings (wip, doesn't work) commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 12:48:38 2022 +0100 use TextualInversionManager in place of embeddings (wip, doesn't work) commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf Merge: 6e4dad60 023df37e Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 02:37:31 2022 +0100 Merge branch 'feature_textual_inversion_mgr' into dev/diffusers commit 023df37efffa67434f77def7fc3c9dfb29f699fd Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 02:36:54 2022 +0100 cleanup commit 05fac594eaf79d0058e3c48deee93df603f136c2 Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 02:07:49 2022 +0100 tweak error checking commit 009f32ed39a7280997c3ffab112adadee0b44279 Author: damian <null@damianstewart.com> Date: Thu Dec 15 21:29:47 2022 +0100 unit tests passing for embeddings with vector length >1 commit beb1b08d9a98112ed2fe073580568e1a18698da3 Author: Damian Stewart <d@damianstewart.com> Date: Thu Dec 15 13:39:09 2022 +0100 more explicit equality tests when overwriting commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9 Author: Damian Stewart <d@damianstewart.com> Date: Thu Dec 15 13:30:13 2022 +0100 wip textual inversion manager (unit tests passing for 1v embedding overwriting) commit 417c2b57d90924a839616bfb66804faab8039e4c Author: Damian Stewart <d@damianstewart.com> Date: Thu Dec 15 12:30:55 2022 +0100 wip textual inversion manager (unit tests passing for base stuff + padding) commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff Author: Damian Stewart <d@damianstewart.com> Date: Thu Dec 15 10:57:57 2022 +0100 wip new TextualInversionManager * stop using WeightedFrozenCLIPEmbedder * store diffusion models locally - configure_invokeai.py reconfigured to store diffusion models rather than CompVis models - hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id - models.yaml does **NOT** use path, just repo_id - "repo_name" changed to "repo_id" to following hugging face conventions - Models are loaded with full precision pending further work. * allow non-local files during development * path takes priority over repo_id * MVP for model_cache and configure_invokeai - Feature complete (almost) - configure_invokeai.py downloads both .ckpt and diffuser models, along with their VAEs. Both types of download are controlled by a unified INITIAL_MODELS.yaml file. - model_cache can load both type of model and switches back and forth in CPU. No memory leaks detected TO DO: 1. I have not yet turned on the LocalOnly flag for diffuser models, so the code will check the Hugging Face repo for updates before using the locally cached models. This will break firewalled systems. I am thinking of putting in a global check for internet connectivity at startup time and setting the LocalOnly flag based on this. It would be good to check updates if there is connectivity. 2. I have not gone completely through INITIAL_MODELS.yaml to check which models are available as diffusers and which are not. So models like PaperCut and VoxelArt may not load properly. The runway and stability models are checked, as well as the Trinart models. 3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE: 1. When loading a .ckpt file there are lots of messages like this: Warning! ldm.modules.attention.CrossAttention is no longer being maintained. Please use InvokeAICrossAttention instead. I'm not sure how to address this. 2. The ckpt models ***don't actually run*** due to the lack of special-case support for them in the generator objects. For example, here's the hard crash you get when you run txt2img against the legacy waifu-diffusion-1.3 model: ``` >> An error occurred: Traceback (most recent call last): File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main main_loop(gen, opt) File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop gen.prompt2image( File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image results = generator.generate( File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate image = make_image(x_T) File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image pipeline_output = pipeline.image_from_embeddings( File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__ raise AttributeError("'{}' object has no attribute '{}'".format( AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings' ``` 3. The inpainting diffusion model isn't working. Here's the output of "banana sushi" when inpainting-1.5 is loaded: ``` Traceback (most recent call last): File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image results = generator.generate( File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate image = make_image(x_T) File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image pipeline_output = pipeline.image_from_embeddings( File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings result_latents, result_attention_map_saver = self.latents_from_embeddings( File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings result: PipelineIntermediateState = infer_latents_from_embeddings( File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__ for result in self.generator_method(*args, **kwargs): File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings step_output = self.step(batched_t, latents, guidance_scale, File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs) File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step pred_original_sample = sample - sigma * model_output RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1 ``` * proper support for float32/float16 - configure script now correctly detects user's preference for fp16/32 and downloads the correct diffuser version. If fp16 version not available, falls back to fp32 version. - misc code cleanup and simplification in model_cache * add on-the-fly conversion of .ckpt to diffusers models 1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py. 2. A new !optimize command has been added to the CLI. Should be ported to Web GUI. User experience on the CLI is this: ``` invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model. This operation will take 30-60s to complete. Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4 Writing new config file entry for sd-v1-4... >> New configuration: sd-v1-4: description: Optimized version of sd-v1-4 format: diffusers path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4 OK to import [n]? y >> Verifying that new model loads... >> Current VRAM usage: 2.60G >> Offloading stable-diffusion-2.1 to CPU >> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4 | Using faster float16 precision You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \ license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\ disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 . | training width x height = (512 x 512) >> Model loaded in 3.48s >> Max VRAM used to load the model: 2.17G >> Current VRAM usage:2.17G >> Textual inversions available: >> Setting Sampler to k_lms (LMSDiscreteScheduler) Keep model loaded? [y] ``` * add parallel set of generator files for ckpt legacy generation * generation using legacy ckpt models now working * diffusers: fix missing attention_maps_callback fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36 * associate legacy CrossAttention with .ckpt models * enable autoconvert New --autoconvert CLI option will scan a designated directory for new .ckpt files, convert them into diffuser models, and import them into models.yaml. Works like this: invoke.py --autoconvert /path/to/weights/directory In ModelCache added two new methods: autoconvert_weights(config_path, weights_directory_path, models_directory_path) convert_and_import(ckpt_path, diffuser_path) * diffusers: update to diffusers 0.11 (from 0.10.2) * fix vae loading & width/height calculation * refactor: encapsulate these conditioning data into one container * diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function * add support for safetensors and accelerate * set local_files_only when internet unreachable * diffusers: fix error-handling path when model repo has no fp16 branch * fix generatorinpaint error Fixes : "ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint' https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318 * quench diffuser safety-checker warning * diffusers: support stochastic DDIM eta parameter * fix conda env creation on macos * fix cross-attention with diffusers 0.11 * diffusers: the VAE needs to be tiling as well as the U-Net * diffusers: comment on subfolders * diffusers: embiggen! * diffusers: make model_cache.list_models serializable * diffusers(inpaint): restore scaling functionality * fix requirements clash between numba and numpy 1.24 * diffusers: allow inpainting model to do non-inpainting tasks * start expanding model_cache functionality * add import_ckpt_model() and import_diffuser_model() methods to model_manager - in addition, model_cache.py is now renamed to model_manager.py * allow "recommended" flag to be optional in INITIAL_MODELS.yaml * configure_invokeai now downloads VAE diffusers in advance * rename ModelCache to ModelManager * remove support for `repo_name` in models.yaml * check for and refuse to load embeddings trained on incompatible models * models.yaml.example: s/repo_name/repo_id and remove extra INITIAL_MODELS now that the main one has diffusers models in it. * add MVP textual inversion script * refactor(InvokeAIDiffuserComponent): factor out _combine() * InvokeAIDiffuserComponent: implement threshold * InvokeAIDiffuserComponent: diagnostic logs for threshold ...this does not look right * add a curses-based frontend to textual inversion - not quite working yet - requires npyscreen installed - on windows will also have the windows-curses requirement, but not added to requirements yet * add curses-based interface for textual inversion * fix crash in convert_and_import() - This corrects a "local variable referenced before assignment" error in model_manager.convert_and_import() * potential workaround for no 'state_dict' key error - As reported in https://github.com/huggingface/diffusers/issues/1876 * create TI output dir if needed * Update environment-lin-cuda.yml (#2159) Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~ * diffusers: update sampler-to-scheduler mapping based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672 * improve user exp for ckt to diffusers conversion - !optimize_models command now operates on an existing ckpt file entry in models.yaml - replaces existing entry, rather than adding a new one - offers to delete the ckpt file after conversion * web: adapt progress callback to deal with old generator or new diffusers pipeline * clean-up model_manager code - add_model() verified to work for .ckpt local paths, .ckpt remote URLs, diffusers local paths, and diffusers repo_ids - convert_and_import() verified to work for local and remove .ckpt files * handle edge cases for import_model() and convert_model() * add support for safetensor .ckpt files * fix name error * code cleanup with pyflake * improve model setting behavior - If the user enters an invalid model name at startup time, will not try to load it, warn, and use default model - CLI UI enhancement: include currently active model in the command line prompt. * update test-invoke-pip.yml - fix model cache path to point to runwayml/stable-diffusion-v1-5 - remove `skip-sd-weights` from configure_invokeai.py args * exclude dev/diffusers from "fail for draft PRs" * disable "fail on PR jobs" * re-add `--skip-sd-weights` since no space * update workflow environments - include `INVOKE_MODEL_RECONFIGURE: '--yes'` * clean up model load failure handling - Allow CLI to run even when no model is defined or loadable. - Inhibit stack trace when model load fails - only show last error - Give user *option* to run configure_invokeai.py when no models successfully load. - Restart invokeai after reconfiguration. * further edge-case handling 1) only one model in models.yaml file, and that model is broken 2) no models in models.yaml 3) models.yaml doesn't exist at all * fix incorrect model status listing - "cached" was not being returned from list_models() - normalize handling of exceptions during model loading: - Passing an invalid model name to generate.set_model() will return a KeyError - All other exceptions are returned as the appropriate Exception * CI: do download weights (if not already cached) * diffusers: fix scheduler loading in offline mode * CI: fix model name (no longer has `diffusers-` prefix) * Update txt2img2img.py (#2256) * fixes to share models with HuggingFace cache system - If HF_HOME environment variable is defined, then all huggingface models are stored in that directory following the standard conventions. - For seamless interoperability, set HF_HOME to ~/.cache/huggingface - If HF_HOME not defined, then models are stored in ~/invokeai/models. This is equivalent to setting HF_HOME to ~/invokeai/models A future commit will add a migration mechanism so that this change doesn't break previous installs. * feat - make model storage compatible with hugging face caching system This commit alters the InvokeAI model directory to be compatible with hugging face, making it easier to share diffusers (and other models) across different programs. - If the HF_HOME environment variable is not set, then models are cached in ~/invokeai/models in a format that is identical to the HuggingFace cache. - If HF_HOME is set, then models are cached wherever HF_HOME points. - To enable sharing with other HuggingFace library clients, set HF_HOME to ~/.cache/huggingface to set the default cache location or to ~/invokeai/models to have huggingface cache inside InvokeAI. * fixes to share models with HuggingFace cache system - If HF_HOME environment variable is defined, then all huggingface models are stored in that directory following the standard conventions. - For seamless interoperability, set HF_HOME to ~/.cache/huggingface - If HF_HOME not defined, then models are stored in ~/invokeai/models. This is equivalent to setting HF_HOME to ~/invokeai/models A future commit will add a migration mechanism so that this change doesn't break previous installs. * fix error "no attribute CkptInpaint" * model_manager.list_models() returns entire model config stanza+status * Initial Draft - Model Manager Diffusers * added hash function to diffusers * implement sha256 hashes on diffusers models * Add Model Manager Support for Diffusers * fix various problems with model manager - in cli import functions, fix not enough values to unpack from _get_name_and_desc() - fix crash when using old-style vae: value with new-style diffuser * rebuild frontend * fix dictconfig-not-serializable issue * fix NoneType' object is not subscriptable crash in model_manager * fix "str has no attribute get" error in model_manager list_models() * Add path and repo_id support for Diffusers Model Manager Also fixes bugs * Fix tooltip IT localization not working * Add Version Number To WebUI * Optimize Model Search * Fix incorrect font on the Model Manager UI * Fix image degradation on merge fixes - [Experimental] This change should effectively fix a couple of things. - Fix image degradation on subsequent merges of the canvas layers. - Fix the slight transparent border that is left behind when filling the bounding box with a color. - Fix the left over line of color when filling a bounding box with color. So far there are no side effects for this. If any, please report. * Add local model filtering for Diffusers / Checkpoints * Go to home on modal close for the Add Modal UI * Styling Fixes * Model Manager Diffusers Localization Update * Add Safe Tensor scanning to Model Manager * Fix model edit form dispatching string values instead of numbers. * Resolve VAE handling / edge cases for supplied repos * defer injecting tokens for textual inversions until they're used for the first time * squash a console warning * implement model migration check * add_model() overwrites previous config rather than merges * fix model config file attribute merging * fix precision handling in textual inversion script * allow ckpt conversion script to work with safetensors .ckpts Applied patch here: https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47 * fix name "args" is not defined crash in textual_inversion_training * fix a second NameError: name 'args' is not defined crash * fix loading of the safety checker from the global cache dir * add installation step to textual inversion frontend - After a successful training run, the script will copy learned_embeds.bin to a subfolder of the embeddings directory. - User given the option to delete the logs and intermediate checkpoints (which together use 7-8G of space) - If textual inversion training fails, reports the error gracefully. * don't crash out on incompatible embeddings - put try: blocks around places where the system tries to load an embedding which is incompatible with the currently loaded model * add support for checkpoint resuming * textual inversion preferences are saved and restored between sessions - Preferences are stored in a file named text-inversion-training/preferences.conf - Currently the resume-from-checkpoint option is not working correctly. Possible bug in textual_inversion_training.py? * copy learned_embeddings.bin into right location * add front end for diffusers model merging - Front end doesn't do anything yet!!!! - Made change to model name parsing in CLI to support ability to have merged models with the "+" character in their names. * improve inpainting experience - recommend ckpt version of inpainting-1.5 to user - fix get_noise() bug in ckpt version of omnibus.py * update environment*yml * tweak instructions to install HuggingFace token * bump version number * enhance update scripts - update scripts will now fetch new INITIAL_MODELS.yaml so that configure_invokeai.py will know about the diffusers versions. * enhance invoke.sh/invoke.bat launchers - added configure_invokeai.py to menu - menu defaults to browser-based invoke * remove conda workflow (#2321) * fix `token_ids has shape torch.Size([79]) - expected [77]` * update CHANGELOG.md with 2.3.* info - Add information on how formats have changed and the upgrade process. - Add short bug list. Co-authored-by: Damian Stewart <d@damianstewart.com> Co-authored-by: Damian Stewart <null@damianstewart.com> Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com> Co-authored-by: mauwii <Mauwii@outlook.de> Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com> Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com> Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com> Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
from ldm.modules.textual_inversion_manager import TextualInversionManager
from ldm.util import (
log_txt_as_img,
exists,
default,
ismap,
isimage,
mean_flat,
count_params,
instantiate_from_config,
)
2021-12-21 02:23:41 +00:00
from ldm.modules.ema import LitEma
from ldm.modules.distributions.distributions import (
normal_kl,
DiagonalGaussianDistribution,
)
from ldm.models.autoencoder import (
VQModelInterface,
IdentityFirstStage,
AutoencoderKL,
)
from ldm.modules.diffusionmodules.util import (
make_beta_schedule,
extract_into_tensor,
noise_like,
)
from ldm.models.diffusion.ddim import DDIMSampler
2021-12-21 02:23:41 +00:00
__conditioning_keys__ = {
'concat': 'c_concat',
'crossattn': 'c_crossattn',
'adm': 'y',
}
2021-12-21 02:23:41 +00:00
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def uniform_on_device(r1, r2, shape, device):
return (r1 - r2) * torch.rand(*shape, device=device) + r2
class DDPM(pl.LightningModule):
# classic DDPM with Gaussian diffusion, in image space
def __init__(
self,
unet_config,
timesteps=1000,
beta_schedule='linear',
loss_type='l2',
ckpt_path=None,
ignore_keys=[],
load_only_unet=False,
monitor='val/loss',
use_ema=True,
first_stage_key='image',
image_size=256,
channels=3,
log_every_t=100,
clip_denoised=True,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
given_betas=None,
original_elbo_weight=0.0,
embedding_reg_weight=0.0,
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
l_simple_weight=1.0,
conditioning_key=None,
parameterization='eps', # all assuming fixed variance schedules
scheduler_config=None,
use_positional_encodings=False,
learn_logvar=False,
logvar_init=0.0,
):
2021-12-21 02:23:41 +00:00
super().__init__()
assert parameterization in [
'eps',
'x0',
], 'currently only supporting "eps" and "x0"'
2021-12-21 02:23:41 +00:00
self.parameterization = parameterization
print(
add ability to import and edit alternative models online - !import_model <path/to/model/weights> will import a new model, prompt the user for its name and description, write it to the models.yaml file, and load it. - !edit_model <model_name> will bring up a previously-defined model and prompt the user to edit its descriptive fields. Example of !import_model <pre> invoke> <b>!import_model models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt</b> >> Model import in process. Please enter the values needed to configure this model: Name for this model: <b>waifu-diffusion</b> Description of this model: <b>Waifu Diffusion v1.3</b> Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b> Default image width: <b>512</b> Default image height: <b>512</b> >> New configuration: waifu-diffusion: config: configs/stable-diffusion/v1-inference.yaml description: Waifu Diffusion v1.3 height: 512 weights: models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt width: 512 OK to import [n]? <b>y</b> >> Caching model stable-diffusion-1.4 in system RAM >> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt | LatentDiffusion: Running in eps-prediction mode | DiffusionWrapper has 859.52 M params. | Making attention of type 'vanilla' with 512 in_channels | Working with z of shape (1, 4, 32, 32) = 4096 dimensions. | Making attention of type 'vanilla' with 512 in_channels | Using faster float16 precision </pre> Example of !edit_model <pre> invoke> <b>!edit_model waifu-diffusion</b> >> Editing model waifu-diffusion from configuration file ./configs/models.yaml description: <b>Waifu diffusion v1.4beta</b> weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b> config: configs/stable-diffusion/v1-inference.yaml width: 512 height: 512 >> New configuration: waifu-diffusion: config: configs/stable-diffusion/v1-inference.yaml description: Waifu diffusion v1.4beta weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt height: 512 width: 512 OK to import [n]? y >> Caching model stable-diffusion-1.4 in system RAM >> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt ... </pre>
2022-10-14 03:48:07 +00:00
f' | {self.__class__.__name__}: Running in {self.parameterization}-prediction mode'
)
2021-12-21 02:23:41 +00:00
self.cond_stage_model = None
self.clip_denoised = clip_denoised
self.log_every_t = log_every_t
self.first_stage_key = first_stage_key
self.image_size = image_size # try conv?
self.channels = channels
self.use_positional_encodings = use_positional_encodings
self.model = DiffusionWrapper(unet_config, conditioning_key)
count_params(self.model, verbose=True)
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.model)
print(f' | Keeping EMAs of {len(list(self.model_ema.buffers()))}.')
2021-12-21 02:23:41 +00:00
self.use_scheduler = scheduler_config is not None
if self.use_scheduler:
self.scheduler_config = scheduler_config
self.v_posterior = v_posterior
self.original_elbo_weight = original_elbo_weight
self.l_simple_weight = l_simple_weight
2022-08-23 22:26:28 +00:00
self.embedding_reg_weight = embedding_reg_weight
2021-12-21 02:23:41 +00:00
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet
)
self.register_schedule(
given_betas=given_betas,
beta_schedule=beta_schedule,
timesteps=timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
2021-12-21 02:23:41 +00:00
self.loss_type = loss_type
self.learn_logvar = learn_logvar
self.logvar = torch.full(
fill_value=logvar_init, size=(self.num_timesteps,)
)
2021-12-21 02:23:41 +00:00
if self.learn_logvar:
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
def register_schedule(
self,
given_betas=None,
beta_schedule='linear',
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
2021-12-21 02:23:41 +00:00
if exists(given_betas):
betas = given_betas
else:
betas = make_beta_schedule(
beta_schedule,
timesteps,
linear_start=linear_start,
linear_end=linear_end,
cosine_s=cosine_s,
)
alphas = 1.0 - betas
2021-12-21 02:23:41 +00:00
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])
2021-12-21 02:23:41 +00:00
(timesteps,) = betas.shape
2021-12-21 02:23:41 +00:00
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
assert (
alphas_cumprod.shape[0] == self.num_timesteps
), 'alphas have to be defined for each timestep'
2021-12-21 02:23:41 +00:00
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer(
'alphas_cumprod_prev', to_torch(alphas_cumprod_prev)
)
2021-12-21 02:23:41 +00:00
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer(
'sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))
)
self.register_buffer(
'sqrt_one_minus_alphas_cumprod',
to_torch(np.sqrt(1.0 - alphas_cumprod)),
)
self.register_buffer(
'log_one_minus_alphas_cumprod',
to_torch(np.log(1.0 - alphas_cumprod)),
)
self.register_buffer(
'sqrt_recip_alphas_cumprod',
to_torch(np.sqrt(1.0 / alphas_cumprod)),
)
self.register_buffer(
'sqrt_recipm1_alphas_cumprod',
to_torch(np.sqrt(1.0 / alphas_cumprod - 1)),
)
2021-12-21 02:23:41 +00:00
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = (1 - self.v_posterior) * betas * (
1.0 - alphas_cumprod_prev
) / (1.0 - alphas_cumprod) + self.v_posterior * betas
2021-12-21 02:23:41 +00:00
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer(
'posterior_variance', to_torch(posterior_variance)
)
2021-12-21 02:23:41 +00:00
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer(
'posterior_log_variance_clipped',
to_torch(np.log(np.maximum(posterior_variance, 1e-20))),
)
self.register_buffer(
'posterior_mean_coef1',
to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod)
),
)
self.register_buffer(
'posterior_mean_coef2',
to_torch(
(1.0 - alphas_cumprod_prev)
* np.sqrt(alphas)
/ (1.0 - alphas_cumprod)
),
)
if self.parameterization == 'eps':
lvlb_weights = self.betas**2 / (
2
* self.posterior_variance
* to_torch(alphas)
* (1 - self.alphas_cumprod)
)
elif self.parameterization == 'x0':
lvlb_weights = (
0.5
* np.sqrt(torch.Tensor(alphas_cumprod))
/ (2.0 * 1 - torch.Tensor(alphas_cumprod))
)
2021-12-21 02:23:41 +00:00
else:
raise NotImplementedError('mu not supported')
2021-12-21 02:23:41 +00:00
# TODO how to choose this term
lvlb_weights[0] = lvlb_weights[1]
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
assert not torch.isnan(self.lvlb_weights).all()
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print(f'{context}: Switched to EMA weights')
2021-12-21 02:23:41 +00:00
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print(f'{context}: Restored training weights')
2021-12-21 02:23:41 +00:00
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
sd = torch.load(path, map_location='cpu')
if 'state_dict' in list(sd.keys()):
sd = sd['state_dict']
2021-12-21 02:23:41 +00:00
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print('Deleting key {} from state_dict.'.format(k))
2021-12-21 02:23:41 +00:00
del sd[k]
missing, unexpected = (
self.load_state_dict(sd, strict=False)
if not only_model
else self.model.load_state_dict(sd, strict=False)
)
print(
f'Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys'
)
2021-12-21 02:23:41 +00:00
if len(missing) > 0:
print(f'Missing Keys: {missing}')
2021-12-21 02:23:41 +00:00
if len(unexpected) > 0:
print(f'Unexpected Keys: {unexpected}')
2021-12-21 02:23:41 +00:00
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape)
* x_start
)
variance = extract_into_tensor(
1.0 - self.alphas_cumprod, t, x_start.shape
)
log_variance = extract_into_tensor(
self.log_one_minus_alphas_cumprod, t, x_start.shape
)
2021-12-21 02:23:41 +00:00
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape)
* x_t
- extract_into_tensor(
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape
)
* noise
2021-12-21 02:23:41 +00:00
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape)
* x_start
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape)
* x_t
)
posterior_variance = extract_into_tensor(
self.posterior_variance, t, x_t.shape
)
posterior_log_variance_clipped = extract_into_tensor(
self.posterior_log_variance_clipped, t, x_t.shape
)
return (
posterior_mean,
posterior_variance,
posterior_log_variance_clipped,
2021-12-21 02:23:41 +00:00
)
def p_mean_variance(self, x, t, clip_denoised: bool):
model_out = self.model(x, t)
if self.parameterization == 'eps':
2021-12-21 02:23:41 +00:00
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == 'x0':
2021-12-21 02:23:41 +00:00
x_recon = model_out
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
2021-12-21 02:23:41 +00:00
(
model_mean,
posterior_variance,
posterior_log_variance,
) = self.q_posterior(x_start=x_recon, x_t=x, t=t)
2021-12-21 02:23:41 +00:00
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(
x=x, t=t, clip_denoised=clip_denoised
)
2021-12-21 02:23:41 +00:00
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(
b, *((1,) * (len(x.shape) - 1))
)
return (
model_mean
+ nonzero_mask * (0.5 * model_log_variance).exp() * noise
)
2021-12-21 02:23:41 +00:00
@torch.no_grad()
def p_sample_loop(self, shape, return_intermediates=False):
device = self.betas.device
b = shape[0]
img = torch.randn(shape, device=device)
intermediates = [img]
for i in tqdm(
reversed(range(0, self.num_timesteps)),
desc='Sampling t',
total=self.num_timesteps,
dynamic_ncols=True,
):
img = self.p_sample(
img,
torch.full((b,), i, device=device, dtype=torch.long),
clip_denoised=self.clip_denoised,
)
2021-12-21 02:23:41 +00:00
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
intermediates.append(img)
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(self, batch_size=16, return_intermediates=False):
image_size = self.image_size
channels = self.channels
return self.p_sample_loop(
(batch_size, channels, image_size, image_size),
return_intermediates=return_intermediates,
)
2021-12-21 02:23:41 +00:00
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape)
* x_start
+ extract_into_tensor(
self.sqrt_one_minus_alphas_cumprod, t, x_start.shape
)
* noise
)
2021-12-21 02:23:41 +00:00
def get_loss(self, pred, target, mean=True):
if self.loss_type == 'l1':
loss = (target - pred).abs()
if mean:
loss = loss.mean()
elif self.loss_type == 'l2':
if mean:
loss = torch.nn.functional.mse_loss(target, pred)
else:
loss = torch.nn.functional.mse_loss(
target, pred, reduction='none'
)
2021-12-21 02:23:41 +00:00
else:
raise NotImplementedError("unknown loss type '{loss_type}'")
return loss
def p_losses(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_out = self.model(x_noisy, t)
loss_dict = {}
if self.parameterization == 'eps':
2021-12-21 02:23:41 +00:00
target = noise
elif self.parameterization == 'x0':
2021-12-21 02:23:41 +00:00
target = x_start
else:
raise NotImplementedError(
f'Paramterization {self.parameterization} not yet supported'
)
2021-12-21 02:23:41 +00:00
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
log_prefix = 'train' if self.training else 'val'
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
loss_simple = loss.mean() * self.l_simple_weight
loss_vlb = (self.lvlb_weights[t] * loss).mean()
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
loss = loss_simple + self.original_elbo_weight * loss_vlb
loss_dict.update({f'{log_prefix}/loss': loss})
return loss, loss_dict
def forward(self, x, *args, **kwargs):
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
t = torch.randint(
0, self.num_timesteps, (x.shape[0],), device=self.device
).long()
2021-12-21 02:23:41 +00:00
return self.p_losses(x, t, *args, **kwargs)
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = rearrange(x, 'b h w c -> b c h w')
x = x.to(memory_format=torch.contiguous_format).float()
return x
def shared_step(self, batch):
x = self.get_input(batch, self.first_stage_key)
loss, loss_dict = self(x)
return loss, loss_dict
def training_step(self, batch, batch_idx):
loss, loss_dict = self.shared_step(batch)
self.log_dict(
loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True
)
2021-12-21 02:23:41 +00:00
self.log(
'global_step',
self.global_step,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False,
)
2021-12-21 02:23:41 +00:00
if self.use_scheduler:
lr = self.optimizers().param_groups[0]['lr']
self.log(
'lr_abs',
lr,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False,
)
2021-12-21 02:23:41 +00:00
return loss
@torch.no_grad()
def validation_step(self, batch, batch_idx):
_, loss_dict_no_ema = self.shared_step(batch)
with self.ema_scope():
_, loss_dict_ema = self.shared_step(batch)
loss_dict_ema = {
key + '_ema': loss_dict_ema[key] for key in loss_dict_ema
}
self.log_dict(
loss_dict_no_ema,
prog_bar=False,
logger=True,
on_step=False,
on_epoch=True,
)
self.log_dict(
loss_dict_ema,
prog_bar=False,
logger=True,
on_step=False,
on_epoch=True,
)
2021-12-21 02:23:41 +00:00
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.model)
def _get_rows_from_list(self, samples):
n_imgs_per_row = len(samples)
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
@torch.no_grad()
def log_images(
self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs
):
2021-12-21 02:23:41 +00:00
log = dict()
x = self.get_input(batch, self.first_stage_key)
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
x = x.to(self.device)[:N]
log['inputs'] = x
2021-12-21 02:23:41 +00:00
# get diffusion row
diffusion_row = list()
x_start = x[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
diffusion_row.append(x_noisy)
log['diffusion_row'] = self._get_rows_from_list(diffusion_row)
2021-12-21 02:23:41 +00:00
if sample:
# get denoise row
with self.ema_scope('Plotting'):
samples, denoise_row = self.sample(
batch_size=N, return_intermediates=True
)
2021-12-21 02:23:41 +00:00
log['samples'] = samples
log['denoise_row'] = self._get_rows_from_list(denoise_row)
2021-12-21 02:23:41 +00:00
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
else:
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
if self.learn_logvar:
params = params + [self.logvar]
opt = torch.optim.AdamW(params, lr=lr)
return opt
class LatentDiffusion(DDPM):
"""main class"""
def __init__(
self,
first_stage_config,
cond_stage_config,
personalization_config,
num_timesteps_cond=None,
cond_stage_key='image',
cond_stage_trainable=False,
concat_mode=True,
cond_stage_forward=None,
conditioning_key=None,
scale_factor=1.0,
scale_by_std=False,
*args,
**kwargs,
):
2022-08-23 22:26:28 +00:00
2021-12-21 02:23:41 +00:00
self.num_timesteps_cond = default(num_timesteps_cond, 1)
self.scale_by_std = scale_by_std
assert self.num_timesteps_cond <= kwargs['timesteps']
# for backwards compatibility after implementation of DiffusionWrapper
if conditioning_key is None:
conditioning_key = 'concat' if concat_mode else 'crossattn'
if cond_stage_config == '__is_unconditional__':
conditioning_key = None
ckpt_path = kwargs.pop('ckpt_path', None)
ignore_keys = kwargs.pop('ignore_keys', [])
2021-12-21 02:23:41 +00:00
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
self.concat_mode = concat_mode
self.cond_stage_trainable = cond_stage_trainable
self.cond_stage_key = cond_stage_key
2022-08-23 22:26:28 +00:00
2021-12-21 02:23:41 +00:00
try:
self.num_downs = (
len(first_stage_config.params.ddconfig.ch_mult) - 1
)
2021-12-21 02:23:41 +00:00
except:
self.num_downs = 0
if not scale_by_std:
self.scale_factor = scale_factor
else:
self.register_buffer('scale_factor', torch.tensor(scale_factor))
self.instantiate_first_stage(first_stage_config)
self.instantiate_cond_stage(cond_stage_config)
2022-08-23 22:26:28 +00:00
2021-12-21 02:23:41 +00:00
self.cond_stage_forward = cond_stage_forward
self.clip_denoised = False
self.bbox_tokenizer = None
2021-12-21 02:23:41 +00:00
self.restarted_from_ckpt = False
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys)
self.restarted_from_ckpt = True
2022-08-23 22:26:28 +00:00
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
self.model.eval()
self.model.train = disabled_train
for param in self.model.parameters():
param.requires_grad = False
self.embedding_manager = self.instantiate_embedding_manager(
personalization_config, self.cond_stage_model
)
use 🧨diffusers model (#1583) * initial commit of DiffusionPipeline class * spike: proof of concept using diffusers for txt2img * doc: type hints for Generator * refactor(model_cache): factor out load_ckpt * model_cache: add ability to load a diffusers model pipeline and update associated things in Generate & Generator to not instantly fail when that happens * model_cache: fix model default image dimensions * txt2img: support switching diffusers schedulers * diffusers: let the scheduler do its scaling of the initial latents Remove IPNDM scheduler; it is not behaving. * web server: update image_progress callback for diffusers data * diffusers: restore prompt weighting feature * diffusers: fix set-sampler error following model switch * diffusers: use InvokeAIDiffuserComponent for conditioning * cross_attention_control: stub (no-op) implementations for diffusers * model_cache: let offload_model work with DiffusionPipeline, sorta. * models.yaml.example: add diffusers-format model, set as default * test-invoke-conda: use diffusers-format model test-invoke-conda: put huggingface-token where the library can use it * environment-mac: upgrade to diffusers 0.7 (from 0.6) this was already done for linux; mac must have been lost in the merge. * preload_models: explicitly load diffusers models In non-interactive mode too, as long as you're logged in. * fix(model_cache): don't check `model.config` in diffusers format clean-up from recent merge. * diffusers integration: support img2img * dev: upgrade to diffusers 0.8 (from 0.7.1) We get to remove some code by using methods that were factored out in the base class. * refactor: remove backported img2img.get_timesteps now that we can use it directly from diffusers 0.8.1 * ci: use diffusers model * dev: upgrade to diffusers 0.9 (from 0.8.1) * lint: correct annotations for Python 3.9. * lint: correct AttributeError.name reference for Python 3.9. * CI: prefer diffusers-1.4 because it no longer requires a token The RunwayML models still do. * build: there's yet another place to update requirements? * configure: try to download models even without token Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.) * configure: add troubleshooting info for config-not-found * fix(configure): prepend root to config path * fix(configure): remove second `default: true` from models example * CI: simplify test-on-push logic now that we don't need secrets The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks. * create an embedding_manager for diffusers * internal: avoid importing diffusers DummyObject see https://github.com/huggingface/diffusers/issues/1479 * fix "config attributes…not expected" diffusers warnings. * fix deprecated scheduler construction * work around an apparent MPS torch bug that causes conditioning to have no effect * 🚧 post-rebase repair * preliminary support for outpainting (no masking yet) * monkey-patch diffusers.attention and use Invoke lowvram code * add always_use_cpu arg to bypass MPS * add cross-attention control support to diffusers (fails on MPS) For unknown reasons MPS produces garbage output with .swap(). Use --always_use_cpu arg to invoke.py for now to test this code on MPS. * diffusers support for the inpainting model * fix debug_image to not crash with non-RGB images. * inpainting for the normal model [WIP] This seems to be performing well until the LAST STEP, at which point it dissolves to confetti. * fix off-by-one bug in cross-attention-control (#1774) prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness). based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly. * refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary * inpainting for the normal model. I think it works this time. * diffusers: reset num_vectors_per_token sync with 44a00555718f1df173c60da0ed646cf700e29537 * diffusers: txt2img2img (hires_fix) with so much slicing and dicing of pipeline methods to stitch them together * refactor(diffusers): reduce some code duplication amongst the different tasks * fixup! refactor(diffusers): reduce some code duplication amongst the different tasks * diffusers: enable DPMSolver++ scheduler * diffusers: upgrade to diffusers 0.10, add Heun scheduler * diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers * CI: default to diffusers-1.5 now that runwayml token requirement is gone * diffusers: update to 0.10 (and transformers to 4.25) * diffusers: use xformers when available diffusers no longer auto-enables this as of 0.10.2. * diffusers: make masked img2img behave better with multi-step schedulers re-randomizing the noise each step was confusing them. * diffusers: work more better with more models. fixed relative path problem with local models. fixed models on hub not always having a `fp16` branch. * diffusers: stopgap fix for attention_maps_callback crash after recent merge * fixup import merge conflicts correction for 061c5369a2247c6c92cd69606bcf54c4f1962a0b * test: add tests/inpainting inputs for masked img2img * diffusers(AddsMaskedGuidance): partial fix for k-schedulers Prevents them from crashing, but results are still hot garbage. * fix --safety_checker arg parsing and add note to diffusers loader about where safety checker gets called * generate: fix import error * CI: don't try to read the old init location * diffusers: support loading an alternate VAE * CI: remove sh-syntax if-statement so it doesn't crash powershell * CI: fold strings in yaml because backslash is not line-continuation in powershell * attention maps callback stuff for diffusers * build: fix syntax error in environment-mac * diffusers: add INITIAL_MODELS with diffusers-compatible repos * re-enable the embedding manager; closes #1778 * Squashed commit of the following: commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 15:43:07 2022 +0100 import new load handling from EmbeddingManager and cleanup commit c4abe91a5ba0d415b45bf734068385668b7a66e6 Merge: 032e856e 1efc6397 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 15:09:53 2022 +0100 Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager commit 032e856eefb3bbc39534f5daafd25764bcfcef8b Merge: 8b4f0fe9 bc515e24 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 15:08:01 2022 +0100 Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager commit 1efc6397fc6e61c1aff4b0258b93089d61de5955 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 15:04:28 2022 +0100 cleanup and add performance notes commit e400f804ac471a0ca2ba432fd658778b20c7bdab Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 14:45:07 2022 +0100 fix bug and update unit tests commit deb9ae0ae1016750e93ce8275734061f7285a231 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 14:28:29 2022 +0100 textual inversion manager seems to work commit 162e02505dec777e91a983c4d0fb52e950d25ff0 Merge: cbad4583 12769b3d Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 11:58:03 2022 +0100 Merge branch 'main' into feature_textual_inversion_mgr commit cbad45836c6aace6871a90f2621a953f49433131 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 11:54:10 2022 +0100 use position embeddings commit 070344c69b0e0db340a183857d0a787b348681d3 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 11:53:47 2022 +0100 Don't crash CLI on exceptions commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8 Author: Damian Stewart <d@damianstewart.com> Date: Sun Dec 18 11:11:55 2022 +0100 add missing position_embeddings commit 12769b3d3562ef71e0f54946b532ad077e10043c Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 13:33:25 2022 +0100 debugging why it don't work commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 13:21:33 2022 +0100 debugging why it don't work commit 664a6e9e146b42d96703f0cc8baf8f5efec04ee1 Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 12:48:38 2022 +0100 use TextualInversionManager in place of embeddings (wip, doesn't work) commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 12:48:38 2022 +0100 use TextualInversionManager in place of embeddings (wip, doesn't work) commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf Merge: 6e4dad60 023df37e Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 02:37:31 2022 +0100 Merge branch 'feature_textual_inversion_mgr' into dev/diffusers commit 023df37efffa67434f77def7fc3c9dfb29f699fd Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 02:36:54 2022 +0100 cleanup commit 05fac594eaf79d0058e3c48deee93df603f136c2 Author: Damian Stewart <d@damianstewart.com> Date: Fri Dec 16 02:07:49 2022 +0100 tweak error checking commit 009f32ed39a7280997c3ffab112adadee0b44279 Author: damian <null@damianstewart.com> Date: Thu Dec 15 21:29:47 2022 +0100 unit tests passing for embeddings with vector length >1 commit beb1b08d9a98112ed2fe073580568e1a18698da3 Author: Damian Stewart <d@damianstewart.com> Date: Thu Dec 15 13:39:09 2022 +0100 more explicit equality tests when overwriting commit 44d8a5a7c85cdabc9ce3a54fd0769a10597b3ca9 Author: Damian Stewart <d@damianstewart.com> Date: Thu Dec 15 13:30:13 2022 +0100 wip textual inversion manager (unit tests passing for 1v embedding overwriting) commit 417c2b57d90924a839616bfb66804faab8039e4c Author: Damian Stewart <d@damianstewart.com> Date: Thu Dec 15 12:30:55 2022 +0100 wip textual inversion manager (unit tests passing for base stuff + padding) commit 2e80872e3b6f7fd7d8eb8928822bd824b63cb2ff Author: Damian Stewart <d@damianstewart.com> Date: Thu Dec 15 10:57:57 2022 +0100 wip new TextualInversionManager * stop using WeightedFrozenCLIPEmbedder * store diffusion models locally - configure_invokeai.py reconfigured to store diffusion models rather than CompVis models - hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id - models.yaml does **NOT** use path, just repo_id - "repo_name" changed to "repo_id" to following hugging face conventions - Models are loaded with full precision pending further work. * allow non-local files during development * path takes priority over repo_id * MVP for model_cache and configure_invokeai - Feature complete (almost) - configure_invokeai.py downloads both .ckpt and diffuser models, along with their VAEs. Both types of download are controlled by a unified INITIAL_MODELS.yaml file. - model_cache can load both type of model and switches back and forth in CPU. No memory leaks detected TO DO: 1. I have not yet turned on the LocalOnly flag for diffuser models, so the code will check the Hugging Face repo for updates before using the locally cached models. This will break firewalled systems. I am thinking of putting in a global check for internet connectivity at startup time and setting the LocalOnly flag based on this. It would be good to check updates if there is connectivity. 2. I have not gone completely through INITIAL_MODELS.yaml to check which models are available as diffusers and which are not. So models like PaperCut and VoxelArt may not load properly. The runway and stability models are checked, as well as the Trinart models. 3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE: 1. When loading a .ckpt file there are lots of messages like this: Warning! ldm.modules.attention.CrossAttention is no longer being maintained. Please use InvokeAICrossAttention instead. I'm not sure how to address this. 2. The ckpt models ***don't actually run*** due to the lack of special-case support for them in the generator objects. For example, here's the hard crash you get when you run txt2img against the legacy waifu-diffusion-1.3 model: ``` >> An error occurred: Traceback (most recent call last): File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main main_loop(gen, opt) File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop gen.prompt2image( File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image results = generator.generate( File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate image = make_image(x_T) File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image pipeline_output = pipeline.image_from_embeddings( File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__ raise AttributeError("'{}' object has no attribute '{}'".format( AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings' ``` 3. The inpainting diffusion model isn't working. Here's the output of "banana sushi" when inpainting-1.5 is loaded: ``` Traceback (most recent call last): File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image results = generator.generate( File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate image = make_image(x_T) File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image pipeline_output = pipeline.image_from_embeddings( File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings result_latents, result_attention_map_saver = self.latents_from_embeddings( File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings result: PipelineIntermediateState = infer_latents_from_embeddings( File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__ for result in self.generator_method(*args, **kwargs): File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings step_output = self.step(batched_t, latents, guidance_scale, File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs) File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step pred_original_sample = sample - sigma * model_output RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1 ``` * proper support for float32/float16 - configure script now correctly detects user's preference for fp16/32 and downloads the correct diffuser version. If fp16 version not available, falls back to fp32 version. - misc code cleanup and simplification in model_cache * add on-the-fly conversion of .ckpt to diffusers models 1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py. 2. A new !optimize command has been added to the CLI. Should be ported to Web GUI. User experience on the CLI is this: ``` invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model. This operation will take 30-60s to complete. Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4 Writing new config file entry for sd-v1-4... >> New configuration: sd-v1-4: description: Optimized version of sd-v1-4 format: diffusers path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4 OK to import [n]? y >> Verifying that new model loads... >> Current VRAM usage: 2.60G >> Offloading stable-diffusion-2.1 to CPU >> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4 | Using faster float16 precision You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \ license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\ disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 . | training width x height = (512 x 512) >> Model loaded in 3.48s >> Max VRAM used to load the model: 2.17G >> Current VRAM usage:2.17G >> Textual inversions available: >> Setting Sampler to k_lms (LMSDiscreteScheduler) Keep model loaded? [y] ``` * add parallel set of generator files for ckpt legacy generation * generation using legacy ckpt models now working * diffusers: fix missing attention_maps_callback fix for 23eb80b40421b2bb8f4b6d3dd30490d11c447b36 * associate legacy CrossAttention with .ckpt models * enable autoconvert New --autoconvert CLI option will scan a designated directory for new .ckpt files, convert them into diffuser models, and import them into models.yaml. Works like this: invoke.py --autoconvert /path/to/weights/directory In ModelCache added two new methods: autoconvert_weights(config_path, weights_directory_path, models_directory_path) convert_and_import(ckpt_path, diffuser_path) * diffusers: update to diffusers 0.11 (from 0.10.2) * fix vae loading & width/height calculation * refactor: encapsulate these conditioning data into one container * diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function * add support for safetensors and accelerate * set local_files_only when internet unreachable * diffusers: fix error-handling path when model repo has no fp16 branch * fix generatorinpaint error Fixes : "ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint' https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318 * quench diffuser safety-checker warning * diffusers: support stochastic DDIM eta parameter * fix conda env creation on macos * fix cross-attention with diffusers 0.11 * diffusers: the VAE needs to be tiling as well as the U-Net * diffusers: comment on subfolders * diffusers: embiggen! * diffusers: make model_cache.list_models serializable * diffusers(inpaint): restore scaling functionality * fix requirements clash between numba and numpy 1.24 * diffusers: allow inpainting model to do non-inpainting tasks * start expanding model_cache functionality * add import_ckpt_model() and import_diffuser_model() methods to model_manager - in addition, model_cache.py is now renamed to model_manager.py * allow "recommended" flag to be optional in INITIAL_MODELS.yaml * configure_invokeai now downloads VAE diffusers in advance * rename ModelCache to ModelManager * remove support for `repo_name` in models.yaml * check for and refuse to load embeddings trained on incompatible models * models.yaml.example: s/repo_name/repo_id and remove extra INITIAL_MODELS now that the main one has diffusers models in it. * add MVP textual inversion script * refactor(InvokeAIDiffuserComponent): factor out _combine() * InvokeAIDiffuserComponent: implement threshold * InvokeAIDiffuserComponent: diagnostic logs for threshold ...this does not look right * add a curses-based frontend to textual inversion - not quite working yet - requires npyscreen installed - on windows will also have the windows-curses requirement, but not added to requirements yet * add curses-based interface for textual inversion * fix crash in convert_and_import() - This corrects a "local variable referenced before assignment" error in model_manager.convert_and_import() * potential workaround for no 'state_dict' key error - As reported in https://github.com/huggingface/diffusers/issues/1876 * create TI output dir if needed * Update environment-lin-cuda.yml (#2159) Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~ * diffusers: update sampler-to-scheduler mapping based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672 * improve user exp for ckt to diffusers conversion - !optimize_models command now operates on an existing ckpt file entry in models.yaml - replaces existing entry, rather than adding a new one - offers to delete the ckpt file after conversion * web: adapt progress callback to deal with old generator or new diffusers pipeline * clean-up model_manager code - add_model() verified to work for .ckpt local paths, .ckpt remote URLs, diffusers local paths, and diffusers repo_ids - convert_and_import() verified to work for local and remove .ckpt files * handle edge cases for import_model() and convert_model() * add support for safetensor .ckpt files * fix name error * code cleanup with pyflake * improve model setting behavior - If the user enters an invalid model name at startup time, will not try to load it, warn, and use default model - CLI UI enhancement: include currently active model in the command line prompt. * update test-invoke-pip.yml - fix model cache path to point to runwayml/stable-diffusion-v1-5 - remove `skip-sd-weights` from configure_invokeai.py args * exclude dev/diffusers from "fail for draft PRs" * disable "fail on PR jobs" * re-add `--skip-sd-weights` since no space * update workflow environments - include `INVOKE_MODEL_RECONFIGURE: '--yes'` * clean up model load failure handling - Allow CLI to run even when no model is defined or loadable. - Inhibit stack trace when model load fails - only show last error - Give user *option* to run configure_invokeai.py when no models successfully load. - Restart invokeai after reconfiguration. * further edge-case handling 1) only one model in models.yaml file, and that model is broken 2) no models in models.yaml 3) models.yaml doesn't exist at all * fix incorrect model status listing - "cached" was not being returned from list_models() - normalize handling of exceptions during model loading: - Passing an invalid model name to generate.set_model() will return a KeyError - All other exceptions are returned as the appropriate Exception * CI: do download weights (if not already cached) * diffusers: fix scheduler loading in offline mode * CI: fix model name (no longer has `diffusers-` prefix) * Update txt2img2img.py (#2256) * fixes to share models with HuggingFace cache system - If HF_HOME environment variable is defined, then all huggingface models are stored in that directory following the standard conventions. - For seamless interoperability, set HF_HOME to ~/.cache/huggingface - If HF_HOME not defined, then models are stored in ~/invokeai/models. This is equivalent to setting HF_HOME to ~/invokeai/models A future commit will add a migration mechanism so that this change doesn't break previous installs. * feat - make model storage compatible with hugging face caching system This commit alters the InvokeAI model directory to be compatible with hugging face, making it easier to share diffusers (and other models) across different programs. - If the HF_HOME environment variable is not set, then models are cached in ~/invokeai/models in a format that is identical to the HuggingFace cache. - If HF_HOME is set, then models are cached wherever HF_HOME points. - To enable sharing with other HuggingFace library clients, set HF_HOME to ~/.cache/huggingface to set the default cache location or to ~/invokeai/models to have huggingface cache inside InvokeAI. * fixes to share models with HuggingFace cache system - If HF_HOME environment variable is defined, then all huggingface models are stored in that directory following the standard conventions. - For seamless interoperability, set HF_HOME to ~/.cache/huggingface - If HF_HOME not defined, then models are stored in ~/invokeai/models. This is equivalent to setting HF_HOME to ~/invokeai/models A future commit will add a migration mechanism so that this change doesn't break previous installs. * fix error "no attribute CkptInpaint" * model_manager.list_models() returns entire model config stanza+status * Initial Draft - Model Manager Diffusers * added hash function to diffusers * implement sha256 hashes on diffusers models * Add Model Manager Support for Diffusers * fix various problems with model manager - in cli import functions, fix not enough values to unpack from _get_name_and_desc() - fix crash when using old-style vae: value with new-style diffuser * rebuild frontend * fix dictconfig-not-serializable issue * fix NoneType' object is not subscriptable crash in model_manager * fix "str has no attribute get" error in model_manager list_models() * Add path and repo_id support for Diffusers Model Manager Also fixes bugs * Fix tooltip IT localization not working * Add Version Number To WebUI * Optimize Model Search * Fix incorrect font on the Model Manager UI * Fix image degradation on merge fixes - [Experimental] This change should effectively fix a couple of things. - Fix image degradation on subsequent merges of the canvas layers. - Fix the slight transparent border that is left behind when filling the bounding box with a color. - Fix the left over line of color when filling a bounding box with color. So far there are no side effects for this. If any, please report. * Add local model filtering for Diffusers / Checkpoints * Go to home on modal close for the Add Modal UI * Styling Fixes * Model Manager Diffusers Localization Update * Add Safe Tensor scanning to Model Manager * Fix model edit form dispatching string values instead of numbers. * Resolve VAE handling / edge cases for supplied repos * defer injecting tokens for textual inversions until they're used for the first time * squash a console warning * implement model migration check * add_model() overwrites previous config rather than merges * fix model config file attribute merging * fix precision handling in textual inversion script * allow ckpt conversion script to work with safetensors .ckpts Applied patch here: https://github.com/huggingface/diffusers/commit/beb932c5d111872c5e45387e7b1b2b3dd0524a47 * fix name "args" is not defined crash in textual_inversion_training * fix a second NameError: name 'args' is not defined crash * fix loading of the safety checker from the global cache dir * add installation step to textual inversion frontend - After a successful training run, the script will copy learned_embeds.bin to a subfolder of the embeddings directory. - User given the option to delete the logs and intermediate checkpoints (which together use 7-8G of space) - If textual inversion training fails, reports the error gracefully. * don't crash out on incompatible embeddings - put try: blocks around places where the system tries to load an embedding which is incompatible with the currently loaded model * add support for checkpoint resuming * textual inversion preferences are saved and restored between sessions - Preferences are stored in a file named text-inversion-training/preferences.conf - Currently the resume-from-checkpoint option is not working correctly. Possible bug in textual_inversion_training.py? * copy learned_embeddings.bin into right location * add front end for diffusers model merging - Front end doesn't do anything yet!!!! - Made change to model name parsing in CLI to support ability to have merged models with the "+" character in their names. * improve inpainting experience - recommend ckpt version of inpainting-1.5 to user - fix get_noise() bug in ckpt version of omnibus.py * update environment*yml * tweak instructions to install HuggingFace token * bump version number * enhance update scripts - update scripts will now fetch new INITIAL_MODELS.yaml so that configure_invokeai.py will know about the diffusers versions. * enhance invoke.sh/invoke.bat launchers - added configure_invokeai.py to menu - menu defaults to browser-based invoke * remove conda workflow (#2321) * fix `token_ids has shape torch.Size([79]) - expected [77]` * update CHANGELOG.md with 2.3.* info - Add information on how formats have changed and the upgrade process. - Add short bug list. Co-authored-by: Damian Stewart <d@damianstewart.com> Co-authored-by: Damian Stewart <null@damianstewart.com> Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com> Co-authored-by: mauwii <Mauwii@outlook.de> Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com> Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com> Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com> Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 14:22:46 +00:00
self.textual_inversion_manager = TextualInversionManager(
tokenizer = self.cond_stage_model.tokenizer,
text_encoder = self.cond_stage_model.transformer,
full_precision = True
)
# this circular component dependency is gross and bad, needs to be rethought
self.cond_stage_model.set_textual_inversion_manager(self.textual_inversion_manager)
2022-08-23 22:26:28 +00:00
self.emb_ckpt_counter = 0
# if self.embedding_manager.is_clip:
# self.cond_stage_model.update_embedding_func(self.embedding_manager)
for param in self.embedding_manager.embedding_parameters():
param.requires_grad = True
def make_cond_schedule(
self,
):
self.cond_ids = torch.full(
size=(self.num_timesteps,),
fill_value=self.num_timesteps - 1,
dtype=torch.long,
)
ids = torch.round(
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
).long()
self.cond_ids[: self.num_timesteps_cond] = ids
2021-12-21 02:23:41 +00:00
@rank_zero_only
@torch.no_grad()
def on_train_batch_start(self, batch, batch_idx, dataloader_idx=None):
2021-12-21 02:23:41 +00:00
# only for very first batch
if (
self.scale_by_std
and self.current_epoch == 0
and self.global_step == 0
and batch_idx == 0
and not self.restarted_from_ckpt
):
assert (
self.scale_factor == 1.0
), 'rather not use custom rescaling and std-rescaling simultaneously'
2021-12-21 02:23:41 +00:00
# set rescale weight to 1./std of encodings
print('### USING STD-RESCALING ###')
2021-12-21 02:23:41 +00:00
x = super().get_input(batch, self.first_stage_key)
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
del self.scale_factor
self.register_buffer('scale_factor', 1.0 / z.flatten().std())
print(f'setting self.scale_factor to {self.scale_factor}')
print('### USING STD-RESCALING ###')
def register_schedule(
self,
given_betas=None,
beta_schedule='linear',
timesteps=1000,
linear_start=1e-4,
linear_end=2e-2,
cosine_s=8e-3,
):
super().register_schedule(
given_betas,
beta_schedule,
timesteps,
linear_start,
linear_end,
cosine_s,
)
2021-12-21 02:23:41 +00:00
self.shorten_cond_schedule = self.num_timesteps_cond > 1
if self.shorten_cond_schedule:
self.make_cond_schedule()
def instantiate_first_stage(self, config):
model = instantiate_from_config(config)
self.first_stage_model = model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
def instantiate_cond_stage(self, config):
if not self.cond_stage_trainable:
if config == '__is_first_stage__':
print('Using first stage also as cond stage.')
2021-12-21 02:23:41 +00:00
self.cond_stage_model = self.first_stage_model
elif config == '__is_unconditional__':
print(
f'Training {self.__class__.__name__} as an unconditional model.'
)
2021-12-21 02:23:41 +00:00
self.cond_stage_model = None
# self.be_unconditional = True
else:
model = instantiate_from_config(config)
self.cond_stage_model = model.eval()
self.cond_stage_model.train = disabled_train
for param in self.cond_stage_model.parameters():
param.requires_grad = False
else:
assert config != '__is_first_stage__'
assert config != '__is_unconditional__'
try:
model = instantiate_from_config(config)
except urllib.error.URLError:
raise SystemExit(
"* Couldn't load a dependency. Try running scripts/preload_models.py from an internet-conected machine."
)
2021-12-21 02:23:41 +00:00
self.cond_stage_model = model
2022-08-23 22:26:28 +00:00
def instantiate_embedding_manager(self, config, embedder):
model = instantiate_from_config(config, embedder=embedder)
if config.params.get(
'embedding_manager_ckpt', None
): # do not load if missing OR empty string
2022-08-23 22:26:28 +00:00
model.load(config.params.embedding_manager_ckpt)
2022-08-23 22:26:28 +00:00
return model
2021-12-21 02:23:41 +00:00
def _get_denoise_row_from_list(
self, samples, desc='', force_no_decoder_quantization=False
):
2021-12-21 02:23:41 +00:00
denoise_row = []
for zd in tqdm(samples, desc=desc):
denoise_row.append(
self.decode_first_stage(
zd.to(self.device),
force_not_quantize=force_no_decoder_quantization,
)
)
2021-12-21 02:23:41 +00:00
n_imgs_per_row = len(denoise_row)
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
return denoise_grid
def get_first_stage_encoding(self, encoder_posterior):
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
z = encoder_posterior.sample()
elif isinstance(encoder_posterior, torch.Tensor):
z = encoder_posterior
else:
raise NotImplementedError(
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
)
2021-12-21 02:23:41 +00:00
return self.scale_factor * z
def get_learned_conditioning(self, c, **kwargs):
2021-12-21 02:23:41 +00:00
if self.cond_stage_forward is None:
if hasattr(self.cond_stage_model, 'encode') and callable(
self.cond_stage_model.encode
):
c = self.cond_stage_model.encode(
c, embedding_manager=self.embedding_manager,**kwargs
)
2021-12-21 02:23:41 +00:00
if isinstance(c, DiagonalGaussianDistribution):
c = c.mode()
else:
c = self.cond_stage_model(c, **kwargs)
2021-12-21 02:23:41 +00:00
else:
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c, **kwargs)
2021-12-21 02:23:41 +00:00
return c
def meshgrid(self, h, w):
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
arr = torch.cat([y, x], dim=-1)
return arr
def delta_border(self, h, w):
"""
:param h: height
:param w: width
:return: normalized distance to image border,
wtith min distance = 0 at border and max dist = 0.5 at image center
"""
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
arr = self.meshgrid(h, w) / lower_right_corner
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
edge_dist = torch.min(
torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1
)[0]
2021-12-21 02:23:41 +00:00
return edge_dist
def get_weighting(self, h, w, Ly, Lx, device):
weighting = self.delta_border(h, w)
weighting = torch.clip(
weighting,
self.split_input_params['clip_min_weight'],
self.split_input_params['clip_max_weight'],
)
weighting = (
weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
)
2021-12-21 02:23:41 +00:00
if self.split_input_params['tie_braker']:
2021-12-21 02:23:41 +00:00
L_weighting = self.delta_border(Ly, Lx)
L_weighting = torch.clip(
L_weighting,
self.split_input_params['clip_min_tie_weight'],
self.split_input_params['clip_max_tie_weight'],
)
2021-12-21 02:23:41 +00:00
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
weighting = weighting * L_weighting
return weighting
def get_fold_unfold(
self, x, kernel_size, stride, uf=1, df=1
): # todo load once not every time, shorten code
2021-12-21 02:23:41 +00:00
"""
:param x: img of size (bs, c, h, w)
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
"""
bs, nc, h, w = x.shape
# number of crops in image
Ly = (h - kernel_size[0]) // stride[0] + 1
Lx = (w - kernel_size[1]) // stride[1] + 1
if uf == 1 and df == 1:
fold_params = dict(
kernel_size=kernel_size, dilation=1, padding=0, stride=stride
)
2021-12-21 02:23:41 +00:00
unfold = torch.nn.Unfold(**fold_params)
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
weighting = self.get_weighting(
kernel_size[0], kernel_size[1], Ly, Lx, x.device
).to(x.dtype)
normalization = fold(weighting).view(
1, 1, h, w
) # normalizes the overlap
weighting = weighting.view(
(1, 1, kernel_size[0], kernel_size[1], Ly * Lx)
)
2021-12-21 02:23:41 +00:00
elif uf > 1 and df == 1:
fold_params = dict(
kernel_size=kernel_size, dilation=1, padding=0, stride=stride
)
2021-12-21 02:23:41 +00:00
unfold = torch.nn.Unfold(**fold_params)
fold_params2 = dict(
kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
dilation=1,
padding=0,
stride=(stride[0] * uf, stride[1] * uf),
)
fold = torch.nn.Fold(
output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2
)
weighting = self.get_weighting(
kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device
).to(x.dtype)
normalization = fold(weighting).view(
1, 1, h * uf, w * uf
) # normalizes the overlap
weighting = weighting.view(
(1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)
)
2021-12-21 02:23:41 +00:00
elif df > 1 and uf == 1:
fold_params = dict(
kernel_size=kernel_size, dilation=1, padding=0, stride=stride
)
2021-12-21 02:23:41 +00:00
unfold = torch.nn.Unfold(**fold_params)
fold_params2 = dict(
kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
dilation=1,
padding=0,
stride=(stride[0] // df, stride[1] // df),
)
fold = torch.nn.Fold(
output_size=(x.shape[2] // df, x.shape[3] // df),
**fold_params2,
)
weighting = self.get_weighting(
kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device
).to(x.dtype)
normalization = fold(weighting).view(
1, 1, h // df, w // df
) # normalizes the overlap
weighting = weighting.view(
(1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)
)
2021-12-21 02:23:41 +00:00
else:
raise NotImplementedError
return fold, unfold, normalization, weighting
@torch.no_grad()
def get_input(
self,
batch,
k,
return_first_stage_outputs=False,
force_c_encode=False,
cond_key=None,
return_original_cond=False,
bs=None,
):
2021-12-21 02:23:41 +00:00
x = super().get_input(batch, k)
if bs is not None:
x = x[:bs]
x = x.to(self.device)
encoder_posterior = self.encode_first_stage(x)
z = self.get_first_stage_encoding(encoder_posterior).detach()
if self.model.conditioning_key is not None:
if cond_key is None:
cond_key = self.cond_stage_key
if cond_key != self.first_stage_key:
if cond_key in ['caption', 'coordinates_bbox']:
xc = batch[cond_key]
elif cond_key == 'class_label':
xc = batch
else:
xc = super().get_input(batch, cond_key).to(self.device)
else:
xc = x
if not self.cond_stage_trainable or force_c_encode:
if isinstance(xc, dict) or isinstance(xc, list):
# import pudb; pudb.set_trace()
c = self.get_learned_conditioning(xc)
else:
c = self.get_learned_conditioning(xc.to(self.device))
else:
c = xc
if bs is not None:
c = c[:bs]
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
ckey = __conditioning_keys__[self.model.conditioning_key]
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
else:
c = None
xc = None
if self.use_positional_encodings:
pos_x, pos_y = self.compute_latent_shifts(batch)
c = {'pos_x': pos_x, 'pos_y': pos_y}
out = [z, c]
if return_first_stage_outputs:
xrec = self.decode_first_stage(z)
out.extend([x, xrec])
if return_original_cond:
out.append(xc)
return out
@torch.no_grad()
def decode_first_stage(
self, z, predict_cids=False, force_not_quantize=False
):
2021-12-21 02:23:41 +00:00
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(
z, shape=None
)
2021-12-21 02:23:41 +00:00
z = rearrange(z, 'b h w c -> b c h w').contiguous()
z = 1.0 / self.scale_factor * z
2021-12-21 02:23:41 +00:00
if hasattr(self, 'split_input_params'):
if self.split_input_params['patch_distributed_vq']:
ks = self.split_input_params['ks'] # eg. (128, 128)
stride = self.split_input_params['stride'] # eg. (64, 64)
uf = self.split_input_params['vqf']
2021-12-21 02:23:41 +00:00
bs, nc, h, w = z.shape
if ks[0] > h or ks[1] > w:
ks = (min(ks[0], h), min(ks[1], w))
print('reducing Kernel')
2021-12-21 02:23:41 +00:00
if stride[0] > h or stride[1] > w:
stride = (min(stride[0], h), min(stride[1], w))
print('reducing stride')
2021-12-21 02:23:41 +00:00
fold, unfold, normalization, weighting = self.get_fold_unfold(
z, ks, stride, uf=uf
)
2021-12-21 02:23:41 +00:00
z = unfold(z) # (bn, nc * prod(**ks), L)
# 1. Reshape to img shape
z = z.view(
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
2021-12-21 02:23:41 +00:00
# 2. apply model loop over last dim
if isinstance(self.first_stage_model, VQModelInterface):
output_list = [
self.first_stage_model.decode(
z[:, :, :, :, i],
force_not_quantize=predict_cids
or force_not_quantize,
)
for i in range(z.shape[-1])
]
2021-12-21 02:23:41 +00:00
else:
output_list = [
self.first_stage_model.decode(z[:, :, :, :, i])
for i in range(z.shape[-1])
]
2021-12-21 02:23:41 +00:00
o = torch.stack(
output_list, axis=-1
) # # (bn, nc, ks[0], ks[1], L)
2021-12-21 02:23:41 +00:00
o = o * weighting
# Reverse 1. reshape to img shape
o = o.view(
(o.shape[0], -1, o.shape[-1])
) # (bn, nc * ks[0] * ks[1], L)
2021-12-21 02:23:41 +00:00
# stitch crops together
decoded = fold(o)
decoded = decoded / normalization # norm is shape (1, 1, h, w)
return decoded
else:
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(
z,
force_not_quantize=predict_cids or force_not_quantize,
)
2021-12-21 02:23:41 +00:00
else:
return self.first_stage_model.decode(z)
else:
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(
z, force_not_quantize=predict_cids or force_not_quantize
)
2021-12-21 02:23:41 +00:00
else:
return self.first_stage_model.decode(z)
# same as above but without decorator
def differentiable_decode_first_stage(
self, z, predict_cids=False, force_not_quantize=False
):
2021-12-21 02:23:41 +00:00
if predict_cids:
if z.dim() == 4:
z = torch.argmax(z.exp(), dim=1).long()
z = self.first_stage_model.quantize.get_codebook_entry(
z, shape=None
)
2021-12-21 02:23:41 +00:00
z = rearrange(z, 'b h w c -> b c h w').contiguous()
z = 1.0 / self.scale_factor * z
2021-12-21 02:23:41 +00:00
if hasattr(self, 'split_input_params'):
if self.split_input_params['patch_distributed_vq']:
ks = self.split_input_params['ks'] # eg. (128, 128)
stride = self.split_input_params['stride'] # eg. (64, 64)
uf = self.split_input_params['vqf']
2021-12-21 02:23:41 +00:00
bs, nc, h, w = z.shape
if ks[0] > h or ks[1] > w:
ks = (min(ks[0], h), min(ks[1], w))
print('reducing Kernel')
2021-12-21 02:23:41 +00:00
if stride[0] > h or stride[1] > w:
stride = (min(stride[0], h), min(stride[1], w))
print('reducing stride')
2021-12-21 02:23:41 +00:00
fold, unfold, normalization, weighting = self.get_fold_unfold(
z, ks, stride, uf=uf
)
2021-12-21 02:23:41 +00:00
z = unfold(z) # (bn, nc * prod(**ks), L)
# 1. Reshape to img shape
z = z.view(
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
2021-12-21 02:23:41 +00:00
# 2. apply model loop over last dim
if isinstance(self.first_stage_model, VQModelInterface):
output_list = [
self.first_stage_model.decode(
z[:, :, :, :, i],
force_not_quantize=predict_cids
or force_not_quantize,
)
for i in range(z.shape[-1])
]
2021-12-21 02:23:41 +00:00
else:
output_list = [
self.first_stage_model.decode(z[:, :, :, :, i])
for i in range(z.shape[-1])
]
2021-12-21 02:23:41 +00:00
o = torch.stack(
output_list, axis=-1
) # # (bn, nc, ks[0], ks[1], L)
2021-12-21 02:23:41 +00:00
o = o * weighting
# Reverse 1. reshape to img shape
o = o.view(
(o.shape[0], -1, o.shape[-1])
) # (bn, nc * ks[0] * ks[1], L)
2021-12-21 02:23:41 +00:00
# stitch crops together
decoded = fold(o)
decoded = decoded / normalization # norm is shape (1, 1, h, w)
return decoded
else:
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(
z,
force_not_quantize=predict_cids or force_not_quantize,
)
2021-12-21 02:23:41 +00:00
else:
return self.first_stage_model.decode(z)
else:
if isinstance(self.first_stage_model, VQModelInterface):
return self.first_stage_model.decode(
z, force_not_quantize=predict_cids or force_not_quantize
)
2021-12-21 02:23:41 +00:00
else:
return self.first_stage_model.decode(z)
@torch.no_grad()
def encode_first_stage(self, x):
if hasattr(self, 'split_input_params'):
if self.split_input_params['patch_distributed_vq']:
ks = self.split_input_params['ks'] # eg. (128, 128)
stride = self.split_input_params['stride'] # eg. (64, 64)
df = self.split_input_params['vqf']
2021-12-21 02:23:41 +00:00
self.split_input_params['original_image_size'] = x.shape[-2:]
bs, nc, h, w = x.shape
if ks[0] > h or ks[1] > w:
ks = (min(ks[0], h), min(ks[1], w))
print('reducing Kernel')
2021-12-21 02:23:41 +00:00
if stride[0] > h or stride[1] > w:
stride = (min(stride[0], h), min(stride[1], w))
print('reducing stride')
2021-12-21 02:23:41 +00:00
fold, unfold, normalization, weighting = self.get_fold_unfold(
x, ks, stride, df=df
)
2021-12-21 02:23:41 +00:00
z = unfold(x) # (bn, nc * prod(**ks), L)
# Reshape to img shape
z = z.view(
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
2021-12-21 02:23:41 +00:00
output_list = [
self.first_stage_model.encode(z[:, :, :, :, i])
for i in range(z.shape[-1])
]
2021-12-21 02:23:41 +00:00
o = torch.stack(output_list, axis=-1)
o = o * weighting
# Reverse reshape to img shape
o = o.view(
(o.shape[0], -1, o.shape[-1])
) # (bn, nc * ks[0] * ks[1], L)
2021-12-21 02:23:41 +00:00
# stitch crops together
decoded = fold(o)
decoded = decoded / normalization
return decoded
else:
return self.first_stage_model.encode(x)
else:
return self.first_stage_model.encode(x)
def shared_step(self, batch, **kwargs):
x, c = self.get_input(batch, self.first_stage_key)
loss = self(x, c)
return loss
def forward(self, x, c, *args, **kwargs):
t = torch.randint(
0, self.num_timesteps, (x.shape[0],), device=self.device
).long()
2021-12-21 02:23:41 +00:00
if self.model.conditioning_key is not None:
assert c is not None
if self.cond_stage_trainable:
c = self.get_learned_conditioning(c)
if self.shorten_cond_schedule: # TODO: drop this option
tc = self.cond_ids[t].to(self.device)
c = self.q_sample(
x_start=c, t=tc, noise=torch.randn_like(c.float())
)
2022-08-23 22:26:28 +00:00
2021-12-21 02:23:41 +00:00
return self.p_losses(x, c, t, *args, **kwargs)
def _rescale_annotations(
self, bboxes, crop_coordinates
): # TODO: move to dataset
2021-12-21 02:23:41 +00:00
def rescale_bbox(bbox):
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
return x0, y0, w, h
return [rescale_bbox(b) for b in bboxes]
def apply_model(self, x_noisy, t, cond, return_ids=False):
if isinstance(cond, dict):
# hybrid case, cond is exptected to be a dict
pass
else:
if not isinstance(cond, list):
cond = [cond]
key = (
'c_concat'
if self.model.conditioning_key == 'concat'
else 'c_crossattn'
)
2021-12-21 02:23:41 +00:00
cond = {key: cond}
if hasattr(self, 'split_input_params'):
assert (
len(cond) == 1
) # todo can only deal with one conditioning atm
assert not return_ids
ks = self.split_input_params['ks'] # eg. (128, 128)
stride = self.split_input_params['stride'] # eg. (64, 64)
2021-12-21 02:23:41 +00:00
h, w = x_noisy.shape[-2:]
fold, unfold, normalization, weighting = self.get_fold_unfold(
x_noisy, ks, stride
)
2021-12-21 02:23:41 +00:00
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
# Reshape to img shape
z = z.view(
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
2021-12-21 02:23:41 +00:00
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
if (
self.cond_stage_key
in ['image', 'LR_image', 'segmentation', 'bbox_img']
and self.model.conditioning_key
): # todo check for completeness
2021-12-21 02:23:41 +00:00
c_key = next(iter(cond.keys())) # get key
c = next(iter(cond.values())) # get value
assert (
len(c) == 1
) # todo extend to list with more than one elem
2021-12-21 02:23:41 +00:00
c = c[0] # get element
c = unfold(c)
c = c.view(
(c.shape[0], -1, ks[0], ks[1], c.shape[-1])
) # (bn, nc, ks[0], ks[1], L )
2021-12-21 02:23:41 +00:00
cond_list = [
{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])
]
2021-12-21 02:23:41 +00:00
elif self.cond_stage_key == 'coordinates_bbox':
assert (
'original_image_size' in self.split_input_params
), 'BoudingBoxRescaling is missing original_image_size'
2021-12-21 02:23:41 +00:00
# assuming padding of unfold is always 0 and its dilation is always 1
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
full_img_h, full_img_w = self.split_input_params[
'original_image_size'
]
2021-12-21 02:23:41 +00:00
# as we are operating on latents, we need the factor from the original image size to the
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
num_downs = self.first_stage_model.encoder.num_resolutions - 1
rescale_latent = 2 ** (num_downs)
# get top left positions of patches as conforming for the bbbox tokenizer, therefore we
2021-12-21 02:23:41 +00:00
# need to rescale the tl patch coordinates to be in between (0,1)
tl_patch_coordinates = [
(
rescale_latent
* stride[0]
* (patch_nr % n_patches_per_row)
/ full_img_w,
rescale_latent
* stride[1]
* (patch_nr // n_patches_per_row)
/ full_img_h,
)
for patch_nr in range(z.shape[-1])
]
2021-12-21 02:23:41 +00:00
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
patch_limits = [
(
x_tl,
y_tl,
rescale_latent * ks[0] / full_img_w,
rescale_latent * ks[1] / full_img_h,
)
for x_tl, y_tl in tl_patch_coordinates
]
2021-12-21 02:23:41 +00:00
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
# tokenize crop coordinates for the bounding boxes of the respective patches
patch_limits_tknzd = [
torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[
None
].to(self.device)
for bbox in patch_limits
] # list of length l with tensors of shape (1, 2)
2021-12-21 02:23:41 +00:00
print(patch_limits_tknzd[0].shape)
# cut tknzd crop position from conditioning
assert isinstance(
cond, dict
), 'cond must be dict to be fed into model'
2021-12-21 02:23:41 +00:00
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
print(cut_cond.shape)
adapted_cond = torch.stack(
[
torch.cat([cut_cond, p], dim=1)
for p in patch_limits_tknzd
]
)
2021-12-21 02:23:41 +00:00
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
print(adapted_cond.shape)
adapted_cond = self.get_learned_conditioning(adapted_cond)
print(adapted_cond.shape)
adapted_cond = rearrange(
adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]
)
2021-12-21 02:23:41 +00:00
print(adapted_cond.shape)
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
else:
cond_list = [
cond for i in range(z.shape[-1])
] # Todo make this more efficient
2021-12-21 02:23:41 +00:00
# apply model by loop over crops
output_list = [
self.model(z_list[i], t, **cond_list[i])
for i in range(z.shape[-1])
]
assert not isinstance(
output_list[0], tuple
) # todo cant deal with multiple model outputs check this never happens
2021-12-21 02:23:41 +00:00
o = torch.stack(output_list, axis=-1)
o = o * weighting
# Reverse reshape to img shape
o = o.view(
(o.shape[0], -1, o.shape[-1])
) # (bn, nc * ks[0] * ks[1], L)
2021-12-21 02:23:41 +00:00
# stitch crops together
x_recon = fold(o) / normalization
else:
x_recon = self.model(x_noisy, t, **cond)
if isinstance(x_recon, tuple) and not return_ids:
return x_recon[0]
else:
return x_recon
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
return (
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape)
* x_t
- pred_xstart
) / extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
2021-12-21 02:23:41 +00:00
def _prior_bpd(self, x_start):
"""
Get the prior KL term for the variational lower-bound, measured in
bits-per-dim.
This term can't be optimized, as it only depends on the encoder.
:param x_start: the [N x C x ...] tensor of inputs.
:return: a batch of [N] KL values (in bits), one per batch element.
"""
batch_size = x_start.shape[0]
t = torch.tensor(
[self.num_timesteps - 1] * batch_size, device=x_start.device
)
2021-12-21 02:23:41 +00:00
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
kl_prior = normal_kl(
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
)
2021-12-21 02:23:41 +00:00
return mean_flat(kl_prior) / np.log(2.0)
def p_losses(self, x_start, cond, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
model_output = self.apply_model(x_noisy, t, cond)
loss_dict = {}
prefix = 'train' if self.training else 'val'
if self.parameterization == 'x0':
2021-12-21 02:23:41 +00:00
target = x_start
elif self.parameterization == 'eps':
2021-12-21 02:23:41 +00:00
target = noise
else:
raise NotImplementedError()
loss_simple = self.get_loss(model_output, target, mean=False).mean(
[1, 2, 3]
)
2021-12-21 02:23:41 +00:00
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
Merge dev into main for 2.2.0 (#1642) * Fixes inpainting + code cleanup * Disable stage info in Inpainting Tab * Mask Brush Preview now always at 0.5 opacity The new mask is only visible properly at max opacity but at max opacity the brush preview becomes fully opaque blocking the view. So the mask brush preview no remains at 0.5 no matter what the Brush opacity is. * Remove save button from Canvas Controls (cleanup) * Implements invert mask * Changes "Invert Mask" to "Preserve Masked Areas" * Fixes (?) spacebar issues * Patches redux-persist and redux-deep-persist with debounced persists Our app changes redux state very, very often. As our undo/redo history grows, the calls to persist state start to take in the 100ms range, due to a the deep cloning of the history. This causes very noticeable performance lag. The deep cloning is required because we need to blacklist certain items in redux from being persisted (e.g. the app's connection status). Debouncing the whole process of persistence is a simple and effective solution. Unfortunately, `redux-persist` dropped `debounce` between v4 and v5, replacing it with `throttle`. `throttle`, instead of delaying the expensive action until a period of X ms of inactivity, simply ensures the action is executed at least every X ms. Of course, this does not fix our performance issue. The patch is very simple. It adds a `debounce` argument - a number of milliseconds - and debounces `redux-persist`'s `update()` method (provided by `createPersistoid`) by that many ms. Before this, I also tried writing a custom storage adapter for `redux-persist` to debounce the calls to `localStorage.setItem()`. While this worked and was far less invasive, it doesn't actually address the issue. It turns out `setItem()` is a very fast part of the process. We use `redux-deep-persist` to simplify the `redux-persist` configuration, which can get complicated when you need to blacklist or whitelist deeply nested state. There is also a patch here for that library because it uses the same types as `redux-persist`. Unfortunately, the last release of `redux-persist` used a package `flat-stream` which was malicious and has been removed from npm. The latest commits to `redux-persist` (about 1 year ago) do not build; we cannot use the master branch. And between the last release and last commit, the changes have all been breaking. Patching this last release (about 3 years old at this point) directly is far simpler than attempting to fix the upstream library's master branch or figuring out an alternative to the malicious and now non-existent dependency. * Adds debouncing * Fixes AttributeError: 'dict' object has no attribute 'invert_mask' * Updates package.json to use redux-persist patches * Attempts to fix redux-persist debounce patch * Fixes undo/redo * Fixes invert mask * Debounce > 300ms * Limits history to 256 for each of undo and redo * Canvas styling * Hotkeys improvement * Add Metadata To Viewer * Increases CFG Scale max to 200 * Fix gallery width size for Outpainting Also fixes the canvas resizing failing n fast pushes * Fixes disappearing canvas grid lines * Adds staging area * Fixes "use all" not setting variationAmount Now sets to 0 when the image had variations. * Builds fresh bundle * Outpainting tab loads to empty canvas instead of upload * Fixes wonky canvas layer ordering & compositing * Fixes error on inpainting paste back `TypeError: 'float' object cannot be interpreted as an integer` * Hides staging area outline on mouseover prev/next * Fixes inpainting not doing img2img when no mask * Fixes bbox not resizing in outpainting if partially off screen * Fixes crashes during iterative outpaint. Still doesn't work correctly though. * Fix iterative outpainting by restoring original images * Moves image uploading to HTTP - It all seems to work fine - A lot of cleanup is still needed - Logging needs to be added - May need types to be reviewed * Fixes: outpainting temp images show in gallery * WIP refactor to unified canvas * Removes console.log from redux-persist patch * Initial unification of canvas * Removes all references to split inpainting/outpainting canvas * Add patchmatch and infill_method parameter to prompt2image (options are 'patchmatch' or 'tile'). * Fixes app after removing in/out-painting refs * Rebases on dev, updates new env files w/ patchmatch * Organises features/canvas * Fixes bounding box ending up offscreen * Organises features/canvas * Stops unnecessary canvas rescales on gallery state change * Fixes 2px layout shift on toggle canvas lock * Clips lines drawn while canvas locked When drawing with the locked canvas, if a brush stroke gets too close to the edge of the canvas and its stroke would extend past the edge of the canvas, the edge of that stroke will be seen after unlocking the canvas. This could cause a problem if you unlock the canvas and now have a bunch of strokes just outside the init image area, which are far back in undo history and you cannot easily erase. With this change, lines drawn while the canvas is locked get clipped to the initial image bbox, fixing this issue. Additionally, the merge and save to gallery functions have been updated to respect the initial image bbox so they function how you'd expect. * Fixes reset canvas view when locked * Fixes send to buttons * Fixes bounding box not being rounded to 64 * Abandons "inpainting" canvas lock * Fixes save to gallery including empty area, adds download and copy image * Fix Current Image display background going over image bounds * Sets status immediately when clicking Invoke * Adds hotkeys and refactors sharing of konva instances Adds hotkeys to canvas. As part of this change, the access to konva instance objects was refactored: Previously closure'd refs were used to indirectly get access to the konva instances outside of react components. Now, a getter and setter function are used to provide access directly to the konva objects. * Updates hotkeys * Fixes canvas showing spinner on first load Also adds good default canvas scale and positioning when no image is on it * Fixes possible hang on MaskCompositer * Improves behaviour when setting init canvas image/reset view * Resets bounding box coords/dims when no image present * Disables canvas actions which cannot be done during processing * Adds useToastWatcher hook - Dispatch an `addToast` action with standard Chakra toast options object to add a toast to the toastQueue - The hook is called in App.tsx and just useEffect's w/ toastQueue as dependency to create the toasts - So now you can add toasts anywhere you have access to `dispatch`, which includes middleware and thunks - Adds first usage of this for the save image buttons in canvas * Update Hotkey Info Add missing tooltip hotkeys and update the hotkeys modal to reflect the new hotkeys for the Unified Canvas. * Fix theme changer not displaying current theme on page refresh * Fix tab count in hotkeys panel * Unify Brush and Eraser Sizes * Fix staging area display toggle not working * Staging Area delete button is now red So it doesnt feel blended into to the rest of them. * Revert "Fix theme changer not displaying current theme on page refresh" This reverts commit 903edfb803e743500242589ff093a8a8a0912726. * Add arguments to use SSL to webserver * Integrates #1487 - touch events Need to add: - Pinch zoom - Touch-specific handling (some things aren't quite right) * Refactors upload-related async thunks - Now standard thunks instead of RTK createAsyncThunk() - Adds toasts for all canvas upload-related actions * Reorganises app file structure * Fixes Canvas Auto Save to Gallery * Fixes staging area outline * Adds staging area hotkeys, disables gallery left/right when staging * Fixes Use All Parameters * Fix metadata viewer image url length when viewing intermediate * Fixes intermediate images being tiny in txt2img/img2img * Removes stale code * Improves canvas status text and adds option to toggle debug info * Fixes paste image to upload * Adds model drop-down to site header * Adds theme changer popover * Fix missing key on ThemeChanger map * Fixes stage position changing on zoom * Hotkey Cleanup - Viewer is now Z - Canvas Move tool is V - sync with PS - Removed some unused hotkeys * Fix canvas resizing when both options and gallery are unpinned * Implements thumbnails for gallery - Thumbnails are saved whenever an image is saved, and when gallery requests images from server - Thumbnails saved at original image aspect ratio with width of 128px as WEBP - If the thumbnail property of an image is unavailable for whatever reason, the image's full size URL is used instead * Saves thumbnails to separate thumbnails directory * Thumbnail size = 256px * Fix Lightbox Issues * Disables canvas image saving functions when processing * Fix index error on going past last image in Gallery * WIP - Lightbox Fixes Still need to fix the images not being centered on load when the image res changes * Fixes another similar index error, simplifies logic * Reworks canvas toolbar * Fixes canvas toolbar upload button * Cleans up IAICanvasStatusText * Improves metadata handling, fixes #1450 - Removes model list from metadata - Adds generation's specific model to metadata - Displays full metadata in JSON viewer * Gracefully handles corrupted images; fixes #1486 - App does not crash if corrupted image loaded - Error is displayed in the UI console and CLI output if an image cannot be loaded * Adds hotkey to reset canvas interaction state If the canvas' interaction state (e.g. isMovingBoundingBox, isDrawing, etc) get stuck somehow, user can press Escape to reset the state. * Removes stray console.log() * Fixes bug causing gallery to close on context menu open * Minor bugfixes - When doing long-running canvas image exporting actions, display indeterminate progress bar - Fix staging area image outline not displaying after committing/discarding results * Removes unused imports * Fixes repo root .gitignore ignoring frontend things * Builds fresh bundle * Styling updates * Removes reasonsWhyNotReady The popover doesn't play well with the button being disabled, and I don't think adds any value. * Image gallery resize/style tweaks * Styles buttons for clearing canvas history and mask * First pass on Canvas options panel * Fixes bug where discarding staged images results in loss of history * Adds Save to Gallery button to staging toolbar * Rearrange some canvas toolbar icons Put brush stuff together and canvas movement stuff together * Fix gallery maxwidth on unified canvas * Update Layer hotkey display to UI * Adds option to crop to bounding box on save * Masking option tweaks * Crop to Bounding Box > Save Box Region Only * Adds clear temp folder * Updates mask options popover behavior * Builds fresh bundle * Fix styling on alert modals * Fix input checkbox styling being incorrect on light theme * Styling fixes * Improves gallery resize behaviour * Cap gallery size on canvas tab so it doesnt overflow * Fixes bug when postprocessing image with no metadata * Adds IAIAlertDialog component * Moves Loopback to app settings * Fixes metadata viewer not showing metadata after refresh Also adds Dream-style prompt to metadata * Adds outpainting specific options * Linting * Fixes gallery width on lightbox, fixes gallery button expansion * Builds fresh bundle * Fix Lightbox images of different res not centering * Update feature tooltip text * Highlight mask icon when on mask layer * Fix gallery not resizing correctly on open and close * Add loopback to just img2img. Remove from settings. * Fix to gallery resizing * Removes Advanced checkbox, cleans up options panel for unified canvas * Minor styling fixes to new options panel layout * Styling Updates * Adds infill method * Tab Styling Fixes * memoize outpainting options * Fix unnecessary gallery re-renders * Isolate Cursor Pos debug text on canvas to prevent rerenders * Fixes missing postprocessed image metadata before refresh * Builds fresh bundle * Fix rerenders on model select * Floating panel re-render fix * Simplify fullscreen hotkey selector * Add Training WIP Tab * Adds Training icon * Move full screen hotkey to floating to prevent tab rerenders * Adds single-column gallery layout * Fixes crash on cancel with intermediates enabled, fixes #1416 * Updates npm dependencies * Fixes img2img attempting inpaint when init image has transparency * Fixes missing threshold and perlin parameters in metadata viewer * Renames "Threshold" > "Noise Threshold" * Fixes postprocessing not being disabled when clicking use all * Builds fresh bundle * Adds color picker * Lints & builds fresh bundle * Fixes iterations being disabled when seed random & variations are off * Un-floors cursor position * Changes color picker preview to circles * Fixes variation params not set correctly when recalled * Fixes invoke hotkey not working in input fields * Simplifies Accordion Prep for adding reset buttons for each section * Fixes mask brush preview color * Committing color picker color changes tool to brush * Color picker does not overwrite user-selected alpha * Adds brush color alpha hotkey * Lints * Removes force_outpaint param * Add inpaint size options to inpaint at a larger size than the actual inpaint image, then scale back down for recombination * Bug fix for inpaint size * Adds inpaint size (as scale bounding box) to UI * Adds auto-scaling for inpaint size * Improves scaled bbox display logic * Fixes bug with clear mask and history * Fixes shouldShowStagingImage not resetting to true on commit * Builds fresh bundle * Fixes canvas failing to scale on first run * Builds fresh bundle * Fixes unnecessary canvas scaling * Adds gallery drag and drop to img2img/canvas * Builds fresh bundle * Fix desktop mode being broken with new versions of flaskwebgui * Fixes canvas dimensions not setting on first load * Builds fresh bundle * stop crash on !import_models call on model inside rootdir - addresses bug report #1546 * prevent "!switch state gets confused if model switching fails" - If !switch were to fail on a particular model, then generate got confused and wouldn't try again until you switch to a different working model and back again. - This commit fixes and closes #1547 * Revert "make the docstring more readable and improve the list_models logic" This reverts commit 248068fe5d57b5639ea7a87ee6cbf023104d957d. * fix model cache path * also set fail-fast to it's default (true) in this way the whole action fails if one job fails this should unblock the runners!!! * fix output path for Archive results * disable checks for python 3.9 * Update-requirements and test-invoke-pip workflow (#1574) * update requirements files * update test-invoke-pip workflow * move requirements-mkdocs.txt to docs folder (#1575) * move requirements-mkdocs.txt to docs folder * update copyright * Fixes outpainting with resized inpaint size * Interactive configuration (#1517) * Update scripts/configure_invokeai.py prevent crash if output exists Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com> * implement changes requested by reviews * default to correct root and output directory on Windows systems - Previously the script was relying on the readline buffer editing feature to set up the correct default. But this feature doesn't exist on windows. - This commit detects when user typed return with an empty directory value and replaces with the default directory. * improved readability of directory choices * Update scripts/configure_invokeai.py Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com> * better error reporting at startup - If user tries to run the script outside of the repo or runtime directory, a more informative message will appear explaining the problem. Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com> * Embedding merging (#1526) * add whole <style token> to vocab for concept library embeddings * add ability to load multiple concept .bin files * make --log_tokenization respect custom tokens * start working on concept downloading system * preliminary support for dynamic loading and merging of multiple embedded models - The embedding_manager is now enhanced with ldm.invoke.concepts_lib, which handles dynamic downloading and caching of embedded models from the Hugging Face concepts library (https://huggingface.co/sd-concepts-library) - Downloading of a embedded model is triggered by the presence of one or more <concept> tags in the prompt. - Once the embedded model is downloaded, its trigger phrase will be loaded into the embedding manager and the prompt's <concept> tag will be replaced with the <trigger_phrase> - The downloaded model stays on disk for fast loading later. - The CLI autocomplete will complete partial <concept> tags for you. Type a '<' and hit tab to get all ~700 concepts. BUGS AND LIMITATIONS: - MODEL NAME VS TRIGGER PHRASE You must use the name of the concept embed model from the SD library, and not the trigger phrase itself. Usually these are the same, but not always. For example, the model named "hoi4-leaders" corresponds to the trigger "<HOI4-Leader>" One reason for this design choice is that there is no apparent constraint on the uniqueness of the trigger phrases and one trigger phrase may map onto multiple models. So we use the model name instead. The second reason is that there is no way I know of to search Hugging Face for models with certain trigger phrases. So we'd have to download all 700 models to index the phrases. The problem this presents is that this may confuse users, who will want to reuse prompts from distributions that use the trigger phrase directly. Usually this will work, but not always. - WON'T WORK ON A FIREWALLED SYSTEM If the host running IAI has no internet connection, it can't download the concept libraries. I will add a script that allows users to preload a list of concept models. - BUG IN PROMPT REPLACEMENT WHEN MODEL NOT FOUND There's a small bug that occurs when the user provides an invalid model name. The <concept> gets replaced with <None> in the prompt. * fix loading .pt embeddings; allow multi-vector embeddings; warn on dupes * simplify replacement logic and remove cuda assumption * download list of concepts from hugging face * remove misleading customization of '*' placeholder the existing code as-is did not do anything; unclear what it was supposed to do. the obvious alternative -- setting using 'placeholder_strings' instead of 'placeholder_tokens' to match model.params.personalization_config.params.placeholder_strings -- caused a crash. i think this is because the passed string also needed to be handed over on init of the PersonalizedBase as the 'placeholder_token' argument. this is weird config dict magic and i don't want to touch it. put a breakpoint in personalzied.py line 116 (top of PersonalizedBase.__init__) if you want to have a crack at it yourself. * address all the issues raised by damian0815 in review of PR #1526 * actually resize the token_embeddings * multiple improvements to the concept loader based on code reviews 1. Activated the --embedding_directory option (alias --embedding_path) to load a single embedding or an entire directory of embeddings at startup time. 2. Can turn off automatic loading of embeddings using --no-embeddings. 3. Embedding checkpoints are scanned with the pickle scanner. 4. More informative error messages when a concept can't be loaded due either to a 404 not found error or a network error. * autocomplete terms end with ">" now * fix startup error and network unreachable 1. If the .invokeai file does not contain the --root and --outdir options, invoke.py will now fix it. 2. Catch and handle network problems when downloading hugging face textual inversion concepts. * fix misformatted error string Co-authored-by: Damian Stewart <d@damianstewart.com> * model_cache.py: fix list_models Signed-off-by: devops117 <55235206+devops117@users.noreply.github.com> * add statement of values (#1584) * this adds the Statement of Values Google doc source = https://docs.google.com/document/d/1-PrUKDJcxy8OyNGc8CyiHhv2VgLvjt7LRGlEpbg1nmQ/edit?usp=sharing * Fix heading * Update InvokeAI_Statement_of_Values.md * Update InvokeAI_Statement_of_Values.md * Update InvokeAI_Statement_of_Values.md * Update InvokeAI_Statement_of_Values.md * Update InvokeAI_Statement_of_Values.md * add keturn and mauwii to the team member list * Fix punctuation * this adds the Statement of Values Google doc source = https://docs.google.com/document/d/1-PrUKDJcxy8OyNGc8CyiHhv2VgLvjt7LRGlEpbg1nmQ/edit?usp=sharing * add keturn and mauwii to the team member list * fix formating - make sub bullets use * (decide to all use - or *) - indent sub bullets Sorry, first only looked at the code version and found this only after looking at the markdown rendered version * use multiparagraph numbered sections * Break up Statement Of Values as per comments on #1584 * remove duplicated word, reduce vagueness it's important not to overstate how many artists we are consulting. * fix typo (sorry blessedcoolant) Co-authored-by: mauwii <Mauwii@outlook.de> Co-authored-by: damian <git@damianstewart.com> * update dockerfile (#1551) * update dockerfile * remove not existing file from .dockerignore * remove bloat and unecesary step also use --no-cache-dir for pip install image is now close to 2GB * make Dockerfile a variable * set base image to `ubuntu:22.10` * add build-essential * link outputs folder for persistence * update tag variable * update docs * fix not customizeable build args, add reqs output * !model_import autocompletes in ROOTDIR * Adds psychedelicious to statement of values signature (#1602) * add a --no-patchmatch option to disable patchmatch loading (#1598) This feature was added to prevent the CI Macintosh tests from erroring out when patchmatch is unable to retrieve its shared library from github assets. * Fix #1599 by relaxing the `match_trigger` regex (#1601) * Fix #1599 by relaxing the `match_trigger` regex Also simplify logic and reduce duplication. * restrict trigger regex again (but not so far) * make concepts library work with Web UI This PR makes it possible to include a Hugging Face concepts library <style-or-subject-trigger> in the WebUI prompt. The metadata seems to be correctly handled. * documentation enhancements (#1603) - Add documentation for the Hugging Face concepts library and TI embedding. - Fixup index.md to point to each of the feature documentation files, including ones that are pending. * tweak setup and environment files for linux & pypatchmatch (#1580) * tweak setup and environment files for linux & pypatchmatch - Downgrade python requirements to 3.9 because 3.10 is not supported on Ubuntu 20.04 LTS (widely-used distro) - Use our github pypatchmatch 0.1.3 in order to install Makefile where it needs to be. - Restored "-e ." as the last install step on pip installs. Hopefully this will not trigger the high-CPU hang we've previously experienced. * keep windows on basicsr 1.4.1 * keep windows on basicsr 1.4.1 * bump pypatchmatch requirement to 0.1.4 - This brings in a version of pypatchmatch that will gracefully handle internet connection not available at startup time. - Also refactors and simplifies the handling of gfpgan's basicsr requirement across various platforms. * revert to older version of list_models() (#1611) This restores the correct behavior of list_models() and quenches the bug of list_models() returning a single model entry named "name". I have not investigated what was wrong with the new version, but I think it may have to do with changes to the behavior in dict.update() * Fixes for #1604 (#1605) * Converts ESRGAN image input to RGB - Also adds typing for image input. - Partially resolves #1604 * ensure there are unmasked pixels before color matching Co-authored-by: Kyle Schouviller <kyle0654@hotmail.com> * update index.md (#1609) - comment out non existing link - fix indention - add seperator between feature categories * Debloat-docker (#1612) * debloat Dockerfile - less options more but more userfriendly - better Entrypoint to simulate CLI usage - without command the container still starts the web-host * debloat build.sh * better syntax in run.sh * update Docker docs - fix description of VOLUMENAME - update run script example to reflect new entrypoint * Test installer (#1618) * test linux install * try removing http from parsed requirements * pip install confirmed working on linux * ready for linux testing - rebuilt py3.10-linux-x86_64-cuda-reqs.txt to include pypatchmatch dependency. - point install.sh and install.bat to test-installer branch. * Updates MPS reqs * detect broken readline history files * fix download.pytorch.org URL * Test installer (Win 11) (#1620) Co-authored-by: Cyrus Chan <cyruswkc@hku.hk> * Test installer (MacOS 13.0.1 w/ torch==1.12.0) (#1621) * Test installer (Win 11) * Test installer (MacOS 13.0.1 w/ torch==1.12.0) Co-authored-by: Cyrus Chan <cyruswkc@hku.hk> * change sourceball to development for testing * Test installer (MacOS 13.0.1 w/ torch==1.12.1 & torchvision==1.13.1) (#1622) * Test installer (Win 11) * Test installer (MacOS 13.0.1 w/ torch==1.12.0) * Test installer (MacOS 13.0.1 w/ torch==1.12.1 & torchvision==1.13.1) Co-authored-by: Cyrus Chan <cyruswkc@hku.hk> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com> Co-authored-by: Cyrus Chan <82143712+cyruschan360@users.noreply.github.com> Co-authored-by: Cyrus Chan <cyruswkc@hku.hk> * 2.2 Doc Updates (#1589) * Unified Canvas Docs & Assets Unified Canvas draft Advanced Tools Updates Doc Updates (lstein feedback) * copy edits to Unified Canvas docs - consistent capitalisation and feature naming - more intimate address (replace "the user" with "you") for improved User Engagement(tm) - grammatical massaging and *poesie* Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> Co-authored-by: damian <git@damianstewart.com> * include a step after config to `cat ~/.invokeai` (#1629) * disable patchmatch in CI actions (#1626) * disable patchmatch in CI actions * fix indention * replace tab with spaces Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com> Co-authored-by: mauwii <Mauwii@outlook.de> * Fix installer script for macOS. (#1630) * refer to the platform as 'osx' instead of 'mac', otherwise the composed URL to micromamba is wrong. * move the `-O` option to `tar` to be grouped with the other tar flags to avoid the `-O` being interpreted as something to unarchive. * Removes symlinked environment.yaml (#1631) Was unintentionally added in #1621 * Fix inpainting with iterations (#1635) * fix error when inpainting using runwayml inpainting model (#1634) - error was "Omnibus object has no attribute pil_image" - closes #1596 * add k_dpmpp_2_a and k_dpmpp_2 solvers options (#1389) * add k_dpmpp_2_a and k_dpmpp_2 solvers options * update frontend Co-authored-by: Victor <victorca25@users.noreply.github.com> Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> * add .editorconfig (#1636) * Web UI 2.2 bugfixes (#1572) * Fixes bug preventing multiple images from being generated * Fixes valid seam strength value range * Update Delete Alert Text Indicates to the user that images are not permanently deleted. * Fixes left/right arrows not working on gallery * Fixes initial image on load erroneously set to a user uploaded image Should be a result gallery image. * Lightbox Fixes - Lightbox is now a button in the current image buttons - Lightbox is also now available in the gallery context menu - Lightbox zoom issues fixed - Lightbox has a fade in animation. * Fix image display wrapper in current preview not overflow bounds * Revert "Fix image display wrapper in current preview not overflow bounds" This reverts commit 5511c82714dbf1d1999d64e8bc357bafa34ddf37. * Change Staging Area discard icon from Bin to X * Expose Snap Threshold and Move Snap Settings to BBox Panel * Changes img2img strength default to 0.75 * Fixes drawing triggering when mouse enters canvas w/ button down When we only supported inpainting and no zoom, this was useful. It allowed the cursor to leave the canvas (which was easy to do given the limited canvas dimensions) and without losing the "I am drawing" state. With a zoomable canvas this is no longer as useful. Additionally, we have more popovers and tools (like the color pickers) which result in unexpected brush strokes. This fixes that issue. * Revert "Expose Snap Threshold and Move Snap Settings to BBox Panel" We will handle this a bit differently - by allowing the grid origin to be moved. I will dig in at some point. This reverts commit 33c92ecf4da724c2f17d9d91c7ea31a43a2f6deb. * Adds Limit Strokes to Box * Adds fill bounding box button * Adds erase bounding box button * Changes Staging area discard icon to match others * Fixes right click breaking move tool * Fixes brush preview visibility issue with "darken outside box" * Fixes history bugs with addFillRect, addEraseRect, and other actions * Adds missing `key` * Fixes postprocessing being applied to canvas generations * Fixes bbox not getting scaled in various situations * Fixes staging area show image toggle not resetting on accept/discard * Locks down canvas while generating/staging * Fixes move tool breaking when canvas loses focus during move/transform * Hides cursor when restrict strokes is on and mouse outside bbox * Lints * Builds fresh bundle * Fix overlapping hotkey for Fill Bounding Box * Build Fresh Bundle * Fixes bug with mask and bbox overlay * Builds fresh bundle Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com> Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> * disable NSFW checker loading during the CI tests (#1641) * disable NSFW checker loading during the CI tests The NSFW filter apparently causes invoke.py to crash during CI testing, possibly due to out of memory errors. This workaround disables NSFW model loading. * doc change * fix formatting errors in yml files * Configure the NSFW checker at install time with default on (#1624) * configure the NSFW checker at install time with default on 1. Changes the --safety_checker argument to --nsfw_checker and --no-nsfw_checker. The original argument is recognized for backward compatibility. 2. The configure script asks users whether to enable the checker (default yes). Also offers users ability to select default sampler and number of generation steps. 3.Enables the pasting of the caution icon on blurred images when InvokeAI is installed into the package directory. 4. Adds documentation for the NSFW checker, including caveats about accuracy, memory requirements, and intermediate image dispaly. * use better fitting icon * NSFW defaults false for testing * set default back to nsfw active Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com> Co-authored-by: mauwii <Mauwii@outlook.de> Signed-off-by: devops117 <55235206+devops117@users.noreply.github.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com> Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com> Co-authored-by: Kyle Schouviller <kyle0654@hotmail.com> Co-authored-by: javl <mail@jaspervanloenen.com> Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com> Co-authored-by: mauwii <Mauwii@outlook.de> Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com> Co-authored-by: Damian Stewart <d@damianstewart.com> Co-authored-by: DevOps117 <55235206+devops117@users.noreply.github.com> Co-authored-by: damian <git@damianstewart.com> Co-authored-by: Damian Stewart <null@damianstewart.com> Co-authored-by: Cyrus Chan <82143712+cyruschan360@users.noreply.github.com> Co-authored-by: Cyrus Chan <cyruswkc@hku.hk> Co-authored-by: Andre LaBranche <dre@mac.com> Co-authored-by: victorca25 <41912303+victorca25@users.noreply.github.com> Co-authored-by: Victor <victorca25@users.noreply.github.com>
2022-11-30 21:12:23 +00:00
logvar_t = self.logvar[t.item()].to(self.device)
2021-12-21 02:23:41 +00:00
loss = loss_simple / torch.exp(logvar_t) + logvar_t
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
if self.learn_logvar:
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
loss_dict.update({'logvar': self.logvar.data.mean()})
loss = self.l_simple_weight * loss.mean()
loss_vlb = self.get_loss(model_output, target, mean=False).mean(
dim=(1, 2, 3)
)
2021-12-21 02:23:41 +00:00
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
loss += self.original_elbo_weight * loss_vlb
2021-12-21 02:23:41 +00:00
loss_dict.update({f'{prefix}/loss': loss})
2022-08-23 22:26:28 +00:00
if self.embedding_reg_weight > 0:
loss_embedding_reg = (
self.embedding_manager.embedding_to_coarse_loss().mean()
)
2022-08-23 22:26:28 +00:00
loss_dict.update({f'{prefix}/loss_emb_reg': loss_embedding_reg})
loss += self.embedding_reg_weight * loss_embedding_reg
2022-08-23 22:26:28 +00:00
loss_dict.update({f'{prefix}/loss': loss})
2021-12-21 02:23:41 +00:00
return loss, loss_dict
def p_mean_variance(
self,
x,
c,
t,
clip_denoised: bool,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
score_corrector=None,
corrector_kwargs=None,
):
2021-12-21 02:23:41 +00:00
t_in = t
model_out = self.apply_model(
x, t_in, c, return_ids=return_codebook_ids
)
2021-12-21 02:23:41 +00:00
if score_corrector is not None:
assert self.parameterization == 'eps'
model_out = score_corrector.modify_score(
self, model_out, x, t, c, **corrector_kwargs
)
2021-12-21 02:23:41 +00:00
if return_codebook_ids:
model_out, logits = model_out
if self.parameterization == 'eps':
2021-12-21 02:23:41 +00:00
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
elif self.parameterization == 'x0':
2021-12-21 02:23:41 +00:00
x_recon = model_out
else:
raise NotImplementedError()
if clip_denoised:
x_recon.clamp_(-1.0, 1.0)
2021-12-21 02:23:41 +00:00
if quantize_denoised:
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(
x_recon
)
(
model_mean,
posterior_variance,
posterior_log_variance,
) = self.q_posterior(x_start=x_recon, x_t=x, t=t)
2021-12-21 02:23:41 +00:00
if return_codebook_ids:
return (
model_mean,
posterior_variance,
posterior_log_variance,
logits,
)
2021-12-21 02:23:41 +00:00
elif return_x0:
return (
model_mean,
posterior_variance,
posterior_log_variance,
x_recon,
)
2021-12-21 02:23:41 +00:00
else:
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(
self,
x,
c,
t,
clip_denoised=False,
repeat_noise=False,
return_codebook_ids=False,
quantize_denoised=False,
return_x0=False,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
):
2021-12-21 02:23:41 +00:00
b, *_, device = *x.shape, x.device
outputs = self.p_mean_variance(
x=x,
c=c,
t=t,
clip_denoised=clip_denoised,
return_codebook_ids=return_codebook_ids,
quantize_denoised=quantize_denoised,
return_x0=return_x0,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
2021-12-21 02:23:41 +00:00
if return_codebook_ids:
raise DeprecationWarning('Support dropped.')
2021-12-21 02:23:41 +00:00
model_mean, _, model_log_variance, logits = outputs
elif return_x0:
model_mean, _, model_log_variance, x0 = outputs
else:
model_mean, _, model_log_variance = outputs
noise = noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.0:
2021-12-21 02:23:41 +00:00
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(
b, *((1,) * (len(x.shape) - 1))
)
2021-12-21 02:23:41 +00:00
if return_codebook_ids:
return model_mean + nonzero_mask * (
0.5 * model_log_variance
).exp() * noise, logits.argmax(dim=1)
2021-12-21 02:23:41 +00:00
if return_x0:
return (
model_mean
+ nonzero_mask * (0.5 * model_log_variance).exp() * noise,
x0,
)
2021-12-21 02:23:41 +00:00
else:
return (
model_mean
+ nonzero_mask * (0.5 * model_log_variance).exp() * noise
)
2021-12-21 02:23:41 +00:00
@torch.no_grad()
def progressive_denoising(
self,
cond,
shape,
verbose=True,
callback=None,
quantize_denoised=False,
img_callback=None,
mask=None,
x0=None,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
batch_size=None,
x_T=None,
start_T=None,
log_every_t=None,
):
2021-12-21 02:23:41 +00:00
if not log_every_t:
log_every_t = self.log_every_t
timesteps = self.num_timesteps
if batch_size is not None:
b = batch_size if batch_size is not None else shape[0]
shape = [batch_size] + list(shape)
else:
b = batch_size = shape[0]
if x_T is None:
img = torch.randn(shape, device=self.device)
else:
img = x_T
intermediates = []
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
2021-12-21 02:23:41 +00:00
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
2021-12-21 02:23:41 +00:00
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(
reversed(range(0, timesteps)),
desc='Progressive Generation',
total=timesteps,
)
if verbose
else reversed(range(0, timesteps))
)
2021-12-21 02:23:41 +00:00
if type(temperature) == float:
temperature = [temperature] * timesteps
for i in iterator:
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(
x_start=cond, t=tc, noise=torch.randn_like(cond)
)
img, x0_partial = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
return_x0=True,
temperature=temperature[i],
noise_dropout=noise_dropout,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
)
2021-12-21 02:23:41 +00:00
if mask is not None:
assert x0 is not None
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
2021-12-21 02:23:41 +00:00
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(x0_partial)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
2021-12-21 02:23:41 +00:00
return img, intermediates
@torch.no_grad()
def p_sample_loop(
self,
cond,
shape,
return_intermediates=False,
x_T=None,
verbose=True,
callback=None,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
img_callback=None,
start_T=None,
log_every_t=None,
):
2021-12-21 02:23:41 +00:00
if not log_every_t:
log_every_t = self.log_every_t
device = self.betas.device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
intermediates = [img]
if timesteps is None:
timesteps = self.num_timesteps
if start_T is not None:
timesteps = min(timesteps, start_T)
iterator = (
tqdm(
reversed(range(0, timesteps)),
desc='Sampling t',
total=timesteps,
)
if verbose
else reversed(range(0, timesteps))
)
2021-12-21 02:23:41 +00:00
if mask is not None:
assert x0 is not None
assert (
x0.shape[2:3] == mask.shape[2:3]
) # spatial size has to match
2021-12-21 02:23:41 +00:00
for i in iterator:
ts = torch.full((b,), i, device=device, dtype=torch.long)
if self.shorten_cond_schedule:
assert self.model.conditioning_key != 'hybrid'
tc = self.cond_ids[ts].to(cond.device)
cond = self.q_sample(
x_start=cond, t=tc, noise=torch.randn_like(cond)
)
img = self.p_sample(
img,
cond,
ts,
clip_denoised=self.clip_denoised,
quantize_denoised=quantize_denoised,
)
2021-12-21 02:23:41 +00:00
if mask is not None:
img_orig = self.q_sample(x0, ts)
img = img_orig * mask + (1.0 - mask) * img
2021-12-21 02:23:41 +00:00
if i % log_every_t == 0 or i == timesteps - 1:
intermediates.append(img)
if callback:
callback(i)
if img_callback:
img_callback(img, i)
2021-12-21 02:23:41 +00:00
if return_intermediates:
return img, intermediates
return img
@torch.no_grad()
def sample(
self,
cond,
batch_size=16,
return_intermediates=False,
x_T=None,
verbose=True,
timesteps=None,
quantize_denoised=False,
mask=None,
x0=None,
shape=None,
**kwargs,
):
2021-12-21 02:23:41 +00:00
if shape is None:
shape = (
batch_size,
self.channels,
self.image_size,
self.image_size,
)
2021-12-21 02:23:41 +00:00
if cond is not None:
if isinstance(cond, dict):
cond = {
key: cond[key][:batch_size]
if not isinstance(cond[key], list)
else list(map(lambda x: x[:batch_size], cond[key]))
for key in cond
}
2021-12-21 02:23:41 +00:00
else:
cond = (
[c[:batch_size] for c in cond]
if isinstance(cond, list)
else cond[:batch_size]
)
return self.p_sample_loop(
cond,
shape,
return_intermediates=return_intermediates,
x_T=x_T,
verbose=verbose,
timesteps=timesteps,
quantize_denoised=quantize_denoised,
mask=mask,
x0=x0,
)
2021-12-21 02:23:41 +00:00
@torch.no_grad()
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
if ddim:
ddim_sampler = DDIMSampler(self)
shape = (self.channels, self.image_size, self.image_size)
samples, intermediates = ddim_sampler.sample(
ddim_steps, batch_size, shape, cond, verbose=False, **kwargs
)
else:
samples, intermediates = self.sample(
cond=cond,
batch_size=batch_size,
return_intermediates=True,
**kwargs,
)
return samples, intermediates
@torch.no_grad()
def get_unconditional_conditioning(self, batch_size, null_label=None):
if null_label is not None:
xc = null_label
if isinstance(xc, ListConfig):
xc = list(xc)
if isinstance(xc, dict) or isinstance(xc, list):
c = self.get_learned_conditioning(xc)
else:
if hasattr(xc, "to"):
xc = xc.to(self.device)
c = self.get_learned_conditioning(xc)
else:
# todo: get null label from cond_stage_model
raise NotImplementedError()
c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
return c
@torch.no_grad()
def log_images(
self,
batch,
N=8,
n_row=4,
sample=True,
ddim_steps=50,
ddim_eta=1.0,
return_keys=None,
quantize_denoised=True,
inpaint=False,
plot_denoise_rows=False,
plot_progressive_rows=False,
plot_diffusion_rows=False,
**kwargs,
):
use_ddim = ddim_steps is not None
2021-12-21 02:23:41 +00:00
log = dict()
z, c, x, xrec, xc = self.get_input(
batch,
self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=N,
)
2021-12-21 02:23:41 +00:00
N = min(x.shape[0], N)
n_row = min(x.shape[0], n_row)
log['inputs'] = x
log['reconstruction'] = xrec
2021-12-21 02:23:41 +00:00
if self.model.conditioning_key is not None:
if hasattr(self.cond_stage_model, 'decode'):
2021-12-21 02:23:41 +00:00
xc = self.cond_stage_model.decode(c)
log['conditioning'] = xc
elif self.cond_stage_key in ['caption']:
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch['caption'])
log['conditioning'] = xc
2021-12-21 02:23:41 +00:00
elif self.cond_stage_key == 'class_label':
xc = log_txt_as_img(
(x.shape[2], x.shape[3]), batch['human_label']
)
2021-12-21 02:23:41 +00:00
log['conditioning'] = xc
elif isimage(xc):
log['conditioning'] = xc
2021-12-21 02:23:41 +00:00
if ismap(xc):
log['original_conditioning'] = self.to_rgb(xc)
2021-12-21 02:23:41 +00:00
if plot_diffusion_rows:
# get diffusion row
diffusion_row = list()
z_start = z[:n_row]
for t in range(self.num_timesteps):
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
t = t.to(self.device).long()
noise = torch.randn_like(z_start)
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
diffusion_row.append(self.decode_first_stage(z_noisy))
diffusion_row = torch.stack(
diffusion_row
) # n_log_step, n_row, C, H, W
2021-12-21 02:23:41 +00:00
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
diffusion_grid = rearrange(
diffusion_grid, 'b n c h w -> (b n) c h w'
)
diffusion_grid = make_grid(
diffusion_grid, nrow=diffusion_row.shape[0]
)
log['diffusion_row'] = diffusion_grid
2021-12-21 02:23:41 +00:00
if sample:
# get denoise row
with self.ema_scope('Plotting'):
samples, z_denoise_row = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
2021-12-21 02:23:41 +00:00
x_samples = self.decode_first_stage(samples)
log['samples'] = x_samples
2021-12-21 02:23:41 +00:00
if plot_denoise_rows:
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
log['denoise_row'] = denoise_grid
uc = self.get_learned_conditioning(len(c) * [''])
sample_scaled, _ = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
unconditional_guidance_scale=5.0,
unconditional_conditioning=uc,
)
log['samples_scaled'] = self.decode_first_stage(sample_scaled)
if (
quantize_denoised
and not isinstance(self.first_stage_model, AutoencoderKL)
and not isinstance(self.first_stage_model, IdentityFirstStage)
):
2021-12-21 02:23:41 +00:00
# also display when quantizing x0 while sampling
with self.ema_scope('Plotting Quantized Denoised'):
samples, z_denoise_row = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
ddim_steps=ddim_steps,
eta=ddim_eta,
quantize_denoised=True,
)
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
# quantize_denoised=True)
2021-12-21 02:23:41 +00:00
x_samples = self.decode_first_stage(samples.to(self.device))
log['samples_x0_quantized'] = x_samples
2021-12-21 02:23:41 +00:00
if inpaint:
# make a simple center square
b, h, w = z.shape[0], z.shape[2], z.shape[3]
mask = torch.ones(N, h, w).to(self.device)
# zeros will be filled in
mask[:, h // 4 : 3 * h // 4, w // 4 : 3 * w // 4] = 0.0
2021-12-21 02:23:41 +00:00
mask = mask[:, None, ...]
with self.ema_scope('Plotting Inpaint'):
samples, _ = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
eta=ddim_eta,
ddim_steps=ddim_steps,
x0=z[:N],
mask=mask,
)
2021-12-21 02:23:41 +00:00
x_samples = self.decode_first_stage(samples.to(self.device))
log['samples_inpainting'] = x_samples
log['mask'] = mask
2021-12-21 02:23:41 +00:00
# outpaint
with self.ema_scope('Plotting Outpaint'):
samples, _ = self.sample_log(
cond=c,
batch_size=N,
ddim=use_ddim,
eta=ddim_eta,
ddim_steps=ddim_steps,
x0=z[:N],
mask=mask,
)
2021-12-21 02:23:41 +00:00
x_samples = self.decode_first_stage(samples.to(self.device))
log['samples_outpainting'] = x_samples
2021-12-21 02:23:41 +00:00
if plot_progressive_rows:
with self.ema_scope('Plotting Progressives'):
img, progressives = self.progressive_denoising(
c,
shape=(self.channels, self.image_size, self.image_size),
batch_size=N,
)
prog_row = self._get_denoise_row_from_list(
progressives, desc='Progressive Generation'
)
log['progressive_row'] = prog_row
2021-12-21 02:23:41 +00:00
if return_keys:
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
return log
else:
return {key: log[key] for key in return_keys}
return log
def configure_optimizers(self):
lr = self.learning_rate
2022-08-23 22:26:28 +00:00
if self.embedding_manager is not None:
params = list(self.embedding_manager.embedding_parameters())
# params = list(self.cond_stage_model.transformer.text_model.embeddings.embedding_manager.embedding_parameters())
else:
params = list(self.model.parameters())
if self.cond_stage_trainable:
print(
f'{self.__class__.__name__}: Also optimizing conditioner params!'
)
2022-08-23 22:26:28 +00:00
params = params + list(self.cond_stage_model.parameters())
if self.learn_logvar:
print('Diffusion model optimizing logvar')
params.append(self.logvar)
2021-12-21 02:23:41 +00:00
opt = torch.optim.AdamW(params, lr=lr)
if self.use_scheduler:
assert 'target' in self.scheduler_config
scheduler = instantiate_from_config(self.scheduler_config)
print('Setting up LambdaLR scheduler...')
2021-12-21 02:23:41 +00:00
scheduler = [
{
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
'interval': 'step',
'frequency': 1,
}
]
2021-12-21 02:23:41 +00:00
return [opt], scheduler
return opt
@torch.no_grad()
def to_rgb(self, x):
x = x.float()
if not hasattr(self, 'colorize'):
2021-12-21 02:23:41 +00:00
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
x = nn.functional.conv2d(x, weight=self.colorize)
x = 2.0 * (x - x.min()) / (x.max() - x.min()) - 1.0
2021-12-21 02:23:41 +00:00
return x
2022-08-23 22:26:28 +00:00
@rank_zero_only
def on_save_checkpoint(self, checkpoint):
checkpoint.clear()
2022-08-23 22:26:28 +00:00
if os.path.isdir(self.trainer.checkpoint_callback.dirpath):
self.embedding_manager.save(
os.path.join(
self.trainer.checkpoint_callback.dirpath, 'embeddings.pt'
)
)
2022-08-23 22:26:28 +00:00
if (self.global_step - self.emb_ckpt_counter) > 500:
self.embedding_manager.save(
os.path.join(
self.trainer.checkpoint_callback.dirpath,
f'embeddings_gs-{self.global_step}.pt',
)
)
2022-08-23 22:26:28 +00:00
self.emb_ckpt_counter += 500
2021-12-21 02:23:41 +00:00
class DiffusionWrapper(pl.LightningModule):
def __init__(self, diff_model_config, conditioning_key):
super().__init__()
self.diffusion_model = instantiate_from_config(diff_model_config)
self.conditioning_key = conditioning_key
assert self.conditioning_key in [
None,
'concat',
'crossattn',
'hybrid',
'adm',
]
2021-12-21 02:23:41 +00:00
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
if self.conditioning_key is None:
out = self.diffusion_model(x, t)
elif self.conditioning_key == 'concat':
xc = torch.cat([x] + c_concat, dim=1)
out = self.diffusion_model(xc, t)
elif self.conditioning_key == 'crossattn':
cc = torch.cat(c_crossattn, 1)
out = self.diffusion_model(x, t, context=cc)
elif self.conditioning_key == 'hybrid':
cc = torch.cat(c_crossattn, 1)
xc = torch.cat([x] + c_concat, dim=1)
2021-12-21 02:23:41 +00:00
out = self.diffusion_model(xc, t, context=cc)
elif self.conditioning_key == 'adm':
cc = c_crossattn[0]
out = self.diffusion_model(x, t, y=cc)
else:
raise NotImplementedError()
return out
class Layout2ImgDiffusion(LatentDiffusion):
# TODO: move all layout-specific hacks to this class
def __init__(self, cond_stage_key, *args, **kwargs):
assert (
cond_stage_key == 'coordinates_bbox'
), 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
2021-12-21 02:23:41 +00:00
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
def log_images(self, batch, N=8, *args, **kwargs):
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
key = 'train' if self.training else 'validation'
dset = self.trainer.datamodule.datasets[key]
mapper = dset.conditional_builders[self.cond_stage_key]
bbox_imgs = []
map_fn = lambda catno: dset.get_textual_label(
dset.get_category_id(catno)
)
2021-12-21 02:23:41 +00:00
for tknzd_bbox in batch[self.cond_stage_key][:N]:
bboximg = mapper.plot(
tknzd_bbox.detach().cpu(), map_fn, (256, 256)
)
2021-12-21 02:23:41 +00:00
bbox_imgs.append(bboximg)
cond_img = torch.stack(bbox_imgs, dim=0)
logs['bbox_image'] = cond_img
return logs
class LatentInpaintDiffusion(LatentDiffusion):
def __init__(
self,
concat_keys=("mask", "masked_image"),
masked_image_key="masked_image",
finetune_keys=None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.masked_image_key = masked_image_key
assert self.masked_image_key in concat_keys
self.concat_keys = concat_keys
@torch.no_grad()
def get_input(
self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False
):
# note: restricted to non-trainable encoders currently
assert (
not self.cond_stage_trainable
), "trainable cond stages not yet supported for inpainting"
z, c, x, xrec, xc = super().get_input(
batch,
self.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=True,
return_original_cond=True,
bs=bs,
)
assert exists(self.concat_keys)
c_cat = list()
for ck in self.concat_keys:
cc = (
rearrange(batch[ck], "b h w c -> b c h w")
.to(memory_format=torch.contiguous_format)
.float()
)
if bs is not None:
cc = cc[:bs]
cc = cc.to(self.device)
bchw = z.shape
if ck != self.masked_image_key:
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
else:
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
if return_first_stage_outputs:
return z, all_conds, x, xrec, xc
return z, all_conds