2024-06-27 19:17:22 +00:00
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
2024-06-28 19:30:35 +00:00
|
|
|
from invokeai.app.invocations.fields import (
|
|
|
|
FieldDescriptions,
|
|
|
|
ImageField,
|
|
|
|
InputField,
|
|
|
|
UIType,
|
|
|
|
WithBoard,
|
|
|
|
WithMetadata,
|
|
|
|
)
|
|
|
|
from invokeai.app.invocations.model import ModelIdentifierField
|
2024-06-27 19:17:22 +00:00
|
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
2024-06-28 19:30:35 +00:00
|
|
|
from invokeai.backend.spandrel_image_to_image_model import SpandrelImageToImageModel
|
2024-06-27 19:17:22 +00:00
|
|
|
|
|
|
|
|
|
|
|
def pil_to_tensor(image: Image.Image) -> torch.Tensor:
|
|
|
|
"""Convert PIL Image to torch.Tensor.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
image (Image.Image): A PIL Image with shape (H, W, C) and values in the range [0, 255].
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
|
|
|
|
"""
|
|
|
|
image_np = np.array(image)
|
|
|
|
# (H, W, C) -> (C, H, W)
|
|
|
|
image_np = np.transpose(image_np, (2, 0, 1))
|
|
|
|
image_np = image_np / 255
|
|
|
|
image_tensor = torch.from_numpy(image_np).float()
|
|
|
|
# (C, H, W) -> (N, C, H, W)
|
|
|
|
image_tensor = image_tensor.unsqueeze(0)
|
|
|
|
return image_tensor
|
|
|
|
|
|
|
|
|
|
|
|
def tensor_to_pil(tensor: torch.Tensor) -> Image.Image:
|
|
|
|
"""Convert torch.Tensor to PIL Image.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tensor (torch.Tensor): A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Image.Image: A PIL Image with shape (H, W, C) and values in the range [0, 255].
|
|
|
|
"""
|
|
|
|
# (N, C, H, W) -> (C, H, W)
|
|
|
|
tensor = tensor.squeeze(0)
|
|
|
|
# (C, H, W) -> (H, W, C)
|
|
|
|
tensor = tensor.permute(1, 2, 0)
|
|
|
|
tensor = tensor.clamp(0, 1)
|
|
|
|
tensor = (tensor * 255).cpu().detach().numpy().astype(np.uint8)
|
|
|
|
image = Image.fromarray(tensor)
|
|
|
|
return image
|
|
|
|
|
|
|
|
|
|
|
|
@invocation("upscale_spandrel", title="Upscale (spandrel)", tags=["upscale"], category="upscale", version="1.0.0")
|
|
|
|
class UpscaleSpandrelInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
|
|
"""Upscales an image using any upscaler supported by spandrel (https://github.com/chaiNNer-org/spandrel)."""
|
|
|
|
|
|
|
|
image: ImageField = InputField(description="The input image")
|
2024-06-28 19:30:35 +00:00
|
|
|
spandrel_image_to_image_model: ModelIdentifierField = InputField(
|
2024-06-28 22:18:45 +00:00
|
|
|
description=FieldDescriptions.spandrel_image_to_image_model, ui_type=UIType.SpandrelImageToImageModel
|
2024-06-28 19:30:35 +00:00
|
|
|
)
|
2024-06-27 19:17:22 +00:00
|
|
|
|
2024-06-28 19:30:35 +00:00
|
|
|
@torch.inference_mode()
|
2024-06-27 19:17:22 +00:00
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
|
|
image = context.images.get_pil(self.image.image_name)
|
|
|
|
|
|
|
|
# Load the model.
|
2024-06-28 19:30:35 +00:00
|
|
|
spandrel_model_info = context.models.load(self.spandrel_image_to_image_model)
|
|
|
|
|
|
|
|
with spandrel_model_info as spandrel_model:
|
|
|
|
assert isinstance(spandrel_model, SpandrelImageToImageModel)
|
|
|
|
|
|
|
|
# Prepare input image for inference.
|
|
|
|
image_tensor = pil_to_tensor(image)
|
|
|
|
image_tensor = image_tensor.to(device=spandrel_model.device, dtype=spandrel_model.dtype)
|
|
|
|
|
|
|
|
# Run inference.
|
|
|
|
image_tensor = spandrel_model.run(image_tensor)
|
2024-06-27 19:17:22 +00:00
|
|
|
|
|
|
|
# Convert the output tensor to a PIL image.
|
|
|
|
pil_image = tensor_to_pil(image_tensor)
|
|
|
|
image_dto = context.images.save(image=pil_image)
|
|
|
|
return ImageOutput.build(image_dto)
|