mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
163 lines
5.8 KiB
Python
163 lines
5.8 KiB
Python
|
import numpy as np
|
||
|
from PIL import Image
|
||
|
from pydantic import BaseModel
|
||
|
|
||
|
from invokeai.app.invocations.baseinvocation import (
|
||
|
BaseInvocation,
|
||
|
BaseInvocationOutput,
|
||
|
InputField,
|
||
|
InvocationContext,
|
||
|
OutputField,
|
||
|
WithMetadata,
|
||
|
WithWorkflow,
|
||
|
invocation,
|
||
|
invocation_output,
|
||
|
)
|
||
|
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
||
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
||
|
from invokeai.backend.tiles.tiles import calc_tiles, merge_tiles_with_linear_blending
|
||
|
from invokeai.backend.tiles.utils import Tile
|
||
|
|
||
|
# TODO(ryand): Is this important?
|
||
|
_DIMENSION_MULTIPLE_OF = 8
|
||
|
|
||
|
|
||
|
class TileWithImage(BaseModel):
|
||
|
tile: Tile
|
||
|
image: ImageField
|
||
|
|
||
|
|
||
|
@invocation_output("calc_tiles_output")
|
||
|
class CalcTilesOutput(BaseInvocationOutput):
|
||
|
# TODO(ryand): Add description from FieldDescriptions.
|
||
|
tiles: list[Tile] = OutputField(description="")
|
||
|
|
||
|
|
||
|
@invocation("calculate_tiles", title="Calculate Tiles", tags=["tiles"], category="tiles", version="1.0.0")
|
||
|
class CalcTiles(BaseInvocation):
|
||
|
"""TODO(ryand)"""
|
||
|
|
||
|
# Inputs
|
||
|
image_height: int = InputField(ge=1)
|
||
|
image_width: int = InputField(ge=1)
|
||
|
tile_height: int = InputField(ge=1, multiple_of=_DIMENSION_MULTIPLE_OF, default=576)
|
||
|
tile_width: int = InputField(ge=1, multiple_of=_DIMENSION_MULTIPLE_OF, default=576)
|
||
|
overlap: int = InputField(ge=0, multiple_of=_DIMENSION_MULTIPLE_OF, default=64)
|
||
|
|
||
|
def invoke(self, context: InvocationContext) -> CalcTilesOutput:
|
||
|
tiles = calc_tiles(
|
||
|
image_height=self.image_height,
|
||
|
image_width=self.image_width,
|
||
|
tile_height=self.tile_height,
|
||
|
tile_width=self.tile_width,
|
||
|
overlap=self.overlap,
|
||
|
)
|
||
|
return CalcTilesOutput(tiles=tiles)
|
||
|
|
||
|
|
||
|
@invocation_output("tile_to_properties_output")
|
||
|
class TileToPropertiesOutput(BaseInvocationOutput):
|
||
|
# TODO(ryand): Add descriptions.
|
||
|
coords_top: int = OutputField(description="")
|
||
|
coords_bottom: int = OutputField(description="")
|
||
|
coords_left: int = OutputField(description="")
|
||
|
coords_right: int = OutputField(description="")
|
||
|
|
||
|
overlap_top: int = OutputField(description="")
|
||
|
overlap_bottom: int = OutputField(description="")
|
||
|
overlap_left: int = OutputField(description="")
|
||
|
overlap_right: int = OutputField(description="")
|
||
|
|
||
|
|
||
|
@invocation("tile_to_properties")
|
||
|
class TileToProperties(BaseInvocation):
|
||
|
"""Split a Tile into its individual properties."""
|
||
|
|
||
|
tile: Tile = InputField()
|
||
|
|
||
|
def invoke(self, context: InvocationContext) -> TileToPropertiesOutput:
|
||
|
return TileToPropertiesOutput(
|
||
|
coords_top=self.tile.coords.top,
|
||
|
coords_bottom=self.tile.coords.bottom,
|
||
|
coords_left=self.tile.coords.left,
|
||
|
coords_right=self.tile.coords.right,
|
||
|
overlap_top=self.tile.overlap.top,
|
||
|
overlap_bottom=self.tile.overlap.bottom,
|
||
|
overlap_left=self.tile.overlap.left,
|
||
|
overlap_right=self.tile.overlap.right,
|
||
|
)
|
||
|
|
||
|
|
||
|
# HACK(ryand): The only reason that PairTileImage is needed is because the iterate/collect nodes don't preserve order.
|
||
|
# Can this be fixed?
|
||
|
|
||
|
|
||
|
@invocation_output("pair_tile_image_output")
|
||
|
class PairTileImageOutput(BaseInvocationOutput):
|
||
|
tile_with_image: TileWithImage = OutputField(description="")
|
||
|
|
||
|
|
||
|
@invocation("pair_tile_image", title="Pair Tile with Image", tags=["tiles"], category="tiles", version="1.0.0")
|
||
|
class PairTileImage(BaseInvocation):
|
||
|
image: ImageField = InputField()
|
||
|
tile: Tile = InputField()
|
||
|
|
||
|
def invoke(self, context: InvocationContext) -> PairTileImageOutput:
|
||
|
return PairTileImageOutput(
|
||
|
tile_with_image=TileWithImage(
|
||
|
tile=self.tile,
|
||
|
image=self.image,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
@invocation("merge_tiles_to_image", title="Merge Tiles To Image", tags=["tiles"], category="tiles", version="1.0.0")
|
||
|
class MergeTilesToImage(BaseInvocation, WithMetadata, WithWorkflow):
|
||
|
"""TODO(ryand)"""
|
||
|
|
||
|
# Inputs
|
||
|
image_height: int = InputField(ge=1)
|
||
|
image_width: int = InputField(ge=1)
|
||
|
tiles_with_images: list[TileWithImage] = InputField()
|
||
|
blend_amount: int = InputField(ge=0)
|
||
|
|
||
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||
|
images = [twi.image for twi in self.tiles_with_images]
|
||
|
tiles = [twi.tile for twi in self.tiles_with_images]
|
||
|
|
||
|
# Get all tile images for processing.
|
||
|
# TODO(ryand): It pains me that we spend time PNG decoding each tile from disk when they almost certainly
|
||
|
# existed in memory at an earlier point in the graph.
|
||
|
tile_np_images: list[np.ndarray] = []
|
||
|
for image in images:
|
||
|
pil_image = context.services.images.get_pil_image(image.image_name)
|
||
|
pil_image = pil_image.convert("RGB")
|
||
|
tile_np_images.append(np.array(pil_image))
|
||
|
|
||
|
# Prepare the output image buffer.
|
||
|
# Check the first tile to determine how many image channels are expected in the output.
|
||
|
channels = tile_np_images[0].shape[-1]
|
||
|
dtype = tile_np_images[0].dtype
|
||
|
np_image = np.zeros(shape=(self.image_height, self.image_width, channels), dtype=dtype)
|
||
|
|
||
|
merge_tiles_with_linear_blending(
|
||
|
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
|
||
|
)
|
||
|
pil_image = Image.fromarray(np_image)
|
||
|
|
||
|
image_dto = context.services.images.create(
|
||
|
image=pil_image,
|
||
|
image_origin=ResourceOrigin.INTERNAL,
|
||
|
image_category=ImageCategory.GENERAL,
|
||
|
node_id=self.id,
|
||
|
session_id=context.graph_execution_state_id,
|
||
|
is_intermediate=self.is_intermediate,
|
||
|
metadata=self.metadata,
|
||
|
workflow=self.workflow,
|
||
|
)
|
||
|
return ImageOutput(
|
||
|
image=ImageField(image_name=image_dto.image_name),
|
||
|
width=image_dto.width,
|
||
|
height=image_dto.height,
|
||
|
)
|