InvokeAI/invokeai/backend/model_management/model_search.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

109 lines
3.4 KiB
Python
Raw Normal View History

2023-07-14 15:14:33 +00:00
# Copyright 2023, Lincoln D. Stein and the InvokeAI Team
"""
Abstract base class for recursive directory search for models.
"""
import os
from abc import ABC, abstractmethod
from typing import List, Set, types
from pathlib import Path
import invokeai.backend.util.logging as logger
2023-07-27 14:54:01 +00:00
2023-07-14 15:14:33 +00:00
class ModelSearch(ABC):
2023-07-27 14:54:01 +00:00
def __init__(self, directories: List[Path], logger: types.ModuleType = logger):
2023-07-14 15:14:33 +00:00
"""
Initialize a recursive model directory search.
:param directories: List of directory Paths to recurse through
:param logger: Logger to use
"""
self.directories = directories
self.logger = logger
self._items_scanned = 0
self._models_found = 0
self._scanned_dirs = set()
self._scanned_paths = set()
self._pruned_paths = set()
@abstractmethod
def on_search_started(self):
"""
Called before the scan starts.
"""
pass
@abstractmethod
def on_model_found(self, model: Path):
"""
Process a found model. Raise an exception if something goes wrong.
:param model: Model to process - could be a directory or checkpoint.
"""
pass
@abstractmethod
def on_search_completed(self):
"""
Perform some activity when the scan is completed. May use instance
variables, items_scanned and models_found
"""
pass
def search(self):
self.on_search_started()
for dir in self.directories:
self.walk_directory(dir)
self.on_search_completed()
def walk_directory(self, path: Path):
for root, dirs, files in os.walk(path):
2023-07-27 14:54:01 +00:00
if str(Path(root).name).startswith("."):
2023-07-14 15:14:33 +00:00
self._pruned_paths.add(root)
if any([Path(root).is_relative_to(x) for x in self._pruned_paths]):
continue
2023-07-27 14:54:01 +00:00
2023-07-14 15:14:33 +00:00
self._items_scanned += len(dirs) + len(files)
for d in dirs:
path = Path(root) / d
if path in self._scanned_paths or path.parent in self._scanned_dirs:
self._scanned_dirs.add(path)
continue
2023-07-27 14:54:01 +00:00
if any(
[
(path / x).exists()
for x in {"config.json", "model_index.json", "learned_embeds.bin", "pytorch_lora_weights.bin"}
]
):
2023-07-14 15:14:33 +00:00
try:
self.on_model_found(path)
self._models_found += 1
self._scanned_dirs.add(path)
except Exception as e:
self.logger.warning(str(e))
for f in files:
path = Path(root) / f
if path.parent in self._scanned_dirs:
continue
2023-07-27 14:54:01 +00:00
if path.suffix in {".ckpt", ".bin", ".pth", ".safetensors", ".pt"}:
2023-07-14 15:14:33 +00:00
try:
self.on_model_found(path)
self._models_found += 1
except Exception as e:
self.logger.warning(str(e))
2023-07-27 14:54:01 +00:00
2023-07-14 15:14:33 +00:00
class FindModels(ModelSearch):
def on_search_started(self):
self.models_found: Set[Path] = set()
2023-07-27 14:54:01 +00:00
def on_model_found(self, model: Path):
2023-07-14 15:14:33 +00:00
self.models_found.add(model)
def on_search_completed(self):
pass
def list_models(self) -> List[Path]:
self.search()
return list(self.models_found)