2024-07-16 17:03:29 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2024-07-12 17:31:26 +00:00
|
|
|
from contextlib import contextmanager
|
|
|
|
from dataclasses import dataclass
|
2024-07-29 21:34:37 +00:00
|
|
|
from typing import TYPE_CHECKING, Callable, Dict, List
|
2024-07-12 17:31:26 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
from diffusers import UNet2DConditionModel
|
|
|
|
|
2024-07-16 17:03:29 +00:00
|
|
|
if TYPE_CHECKING:
|
|
|
|
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
|
2024-07-18 20:49:44 +00:00
|
|
|
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
|
2024-07-16 17:03:29 +00:00
|
|
|
|
2024-07-12 17:31:26 +00:00
|
|
|
|
|
|
|
@dataclass
|
2024-07-18 20:49:44 +00:00
|
|
|
class CallbackMetadata:
|
|
|
|
callback_type: ExtensionCallbackType
|
|
|
|
order: int
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class CallbackFunctionWithMetadata:
|
|
|
|
metadata: CallbackMetadata
|
|
|
|
function: Callable[[DenoiseContext], None]
|
|
|
|
|
|
|
|
|
|
|
|
def callback(callback_type: ExtensionCallbackType, order: int = 0):
|
|
|
|
def _decorator(function):
|
|
|
|
function._ext_metadata = CallbackMetadata(
|
|
|
|
callback_type=callback_type,
|
|
|
|
order=order,
|
|
|
|
)
|
|
|
|
return function
|
2024-07-12 17:31:26 +00:00
|
|
|
|
|
|
|
return _decorator
|
|
|
|
|
|
|
|
|
|
|
|
class ExtensionBase:
|
2024-07-12 21:44:21 +00:00
|
|
|
def __init__(self):
|
2024-07-18 20:49:44 +00:00
|
|
|
self._callbacks: Dict[ExtensionCallbackType, List[CallbackFunctionWithMetadata]] = {}
|
|
|
|
|
|
|
|
# Register all of the callback methods for this instance.
|
2024-07-12 17:31:26 +00:00
|
|
|
for func_name in dir(self):
|
|
|
|
func = getattr(self, func_name)
|
2024-07-18 20:49:44 +00:00
|
|
|
metadata = getattr(func, "_ext_metadata", None)
|
|
|
|
if metadata is not None and isinstance(metadata, CallbackMetadata):
|
|
|
|
if metadata.callback_type not in self._callbacks:
|
|
|
|
self._callbacks[metadata.callback_type] = []
|
|
|
|
self._callbacks[metadata.callback_type].append(CallbackFunctionWithMetadata(metadata, func))
|
|
|
|
|
|
|
|
def get_callbacks(self):
|
|
|
|
return self._callbacks
|
2024-07-12 17:31:26 +00:00
|
|
|
|
|
|
|
@contextmanager
|
2024-07-23 13:18:04 +00:00
|
|
|
def patch_extension(self, ctx: DenoiseContext):
|
2024-07-12 17:31:26 +00:00
|
|
|
yield None
|
|
|
|
|
|
|
|
@contextmanager
|
2024-07-29 21:34:37 +00:00
|
|
|
def patch_unet(self, unet: UNet2DConditionModel, original_weights: Dict[str, torch.Tensor]):
|
|
|
|
"""A context manager for applying patches to the UNet model. The context manager's lifetime spans the entire
|
|
|
|
diffusion process. Weight unpatching is handled upstream, and is achieved by adding unsaved weights in
|
|
|
|
`original_weights` dict. Note that this enables some performance optimization by avoiding redundant operations.
|
|
|
|
All other patches (e.g. changes to tensor shapes, function monkey-patches, etc.) should be unpatched by this
|
|
|
|
context manager.
|
2024-07-27 01:25:15 +00:00
|
|
|
|
|
|
|
Args:
|
|
|
|
unet (UNet2DConditionModel): The UNet model on execution device to patch.
|
2024-07-29 21:34:37 +00:00
|
|
|
cached_weights (Dict[str, torch.Tensor]]): A read-only copy of the model's original weights in CPU, for
|
|
|
|
unpatching purposes. Extension can save tensor which being modified, if it is not saved yet, or can
|
|
|
|
access original weight value.
|
2024-07-27 01:25:15 +00:00
|
|
|
"""
|
2024-07-29 21:34:37 +00:00
|
|
|
yield
|