2022-09-29 22:58:06 +00:00
|
|
|
'''
|
2022-10-08 15:37:23 +00:00
|
|
|
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
|
2022-09-29 22:58:06 +00:00
|
|
|
'''
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
import math
|
2022-10-27 05:51:35 +00:00
|
|
|
from ldm.invoke.generator.base import Generator
|
2022-09-29 22:58:06 +00:00
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
2022-10-27 05:51:35 +00:00
|
|
|
from ldm.invoke.generator.omnibus import Omnibus
|
2022-10-19 17:57:20 +00:00
|
|
|
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
2022-10-27 05:51:35 +00:00
|
|
|
from PIL import Image
|
2022-09-29 22:58:06 +00:00
|
|
|
|
|
|
|
class Txt2Img2Img(Generator):
|
|
|
|
def __init__(self, model, precision):
|
|
|
|
super().__init__(model, precision)
|
|
|
|
self.init_latent = None # for get_noise()
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
|
|
|
conditioning,width,height,strength,step_callback=None,**kwargs):
|
|
|
|
"""
|
|
|
|
Returns a function returning an image derived from the prompt and the initial image
|
|
|
|
Return value depends on the seed at the time you call it
|
|
|
|
kwargs are 'width' and 'height'
|
|
|
|
"""
|
2022-10-24 00:02:42 +00:00
|
|
|
uc, c, extra_conditioning_info = conditioning
|
2022-10-28 03:12:21 +00:00
|
|
|
scale_dim = min(width, height)
|
|
|
|
scale = 512 / scale_dim
|
|
|
|
|
|
|
|
init_width = math.ceil(scale * width / 64) * 64
|
|
|
|
init_height = math.ceil(scale * height / 64) * 64
|
2022-09-29 22:58:06 +00:00
|
|
|
|
|
|
|
@torch.no_grad()
|
2022-10-26 01:59:13 +00:00
|
|
|
def make_image(x_T):
|
2022-09-29 22:58:06 +00:00
|
|
|
|
|
|
|
shape = [
|
|
|
|
self.latent_channels,
|
|
|
|
init_height // self.downsampling_factor,
|
|
|
|
init_width // self.downsampling_factor,
|
|
|
|
]
|
2022-10-26 01:59:13 +00:00
|
|
|
|
2022-10-05 16:31:04 +00:00
|
|
|
sampler.make_schedule(
|
|
|
|
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
|
|
|
)
|
2022-10-26 01:59:13 +00:00
|
|
|
|
2022-11-10 21:49:25 +00:00
|
|
|
#x = self.get_noise(init_width, init_height)
|
|
|
|
x = x_T
|
|
|
|
|
2022-09-29 22:58:06 +00:00
|
|
|
if self.free_gpu_mem and self.model.model.device != self.model.device:
|
|
|
|
self.model.model.to(self.model.device)
|
|
|
|
|
|
|
|
samples, _ = sampler.sample(
|
|
|
|
batch_size = 1,
|
|
|
|
S = steps,
|
2022-11-10 21:49:25 +00:00
|
|
|
x_T = x,
|
2022-09-29 22:58:06 +00:00
|
|
|
conditioning = c,
|
|
|
|
shape = shape,
|
|
|
|
verbose = False,
|
|
|
|
unconditional_guidance_scale = cfg_scale,
|
|
|
|
unconditional_conditioning = uc,
|
|
|
|
eta = ddim_eta,
|
2022-10-18 20:54:51 +00:00
|
|
|
img_callback = step_callback,
|
2022-10-20 10:01:48 +00:00
|
|
|
extra_conditioning_info = extra_conditioning_info
|
2022-09-29 22:58:06 +00:00
|
|
|
)
|
2022-10-26 01:59:13 +00:00
|
|
|
|
2022-09-29 22:58:06 +00:00
|
|
|
print(
|
2022-10-06 14:39:08 +00:00
|
|
|
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
|
2022-09-29 22:58:06 +00:00
|
|
|
)
|
2022-10-26 01:59:13 +00:00
|
|
|
|
2022-09-29 22:58:06 +00:00
|
|
|
# resizing
|
2022-11-10 21:49:25 +00:00
|
|
|
samples = torch.nn.functional.interpolate(
|
|
|
|
samples,
|
|
|
|
size=(height // self.downsampling_factor, width // self.downsampling_factor),
|
|
|
|
mode="bilinear"
|
|
|
|
)
|
2022-09-29 22:58:06 +00:00
|
|
|
|
|
|
|
t_enc = int(strength * steps)
|
2022-10-06 14:39:08 +00:00
|
|
|
ddim_sampler = DDIMSampler(self.model, device=self.model.device)
|
|
|
|
ddim_sampler.make_schedule(
|
|
|
|
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
|
|
|
)
|
2022-09-29 22:58:06 +00:00
|
|
|
|
2022-10-06 14:39:08 +00:00
|
|
|
z_enc = ddim_sampler.stochastic_encode(
|
2022-09-29 22:58:06 +00:00
|
|
|
samples,
|
|
|
|
torch.tensor([t_enc]).to(self.model.device),
|
2022-10-06 14:39:08 +00:00
|
|
|
noise=self.get_noise(width,height,False)
|
2022-09-29 22:58:06 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# decode it
|
2022-10-06 14:39:08 +00:00
|
|
|
samples = ddim_sampler.decode(
|
2022-09-29 22:58:06 +00:00
|
|
|
z_enc,
|
|
|
|
c,
|
|
|
|
t_enc,
|
|
|
|
img_callback = step_callback,
|
|
|
|
unconditional_guidance_scale=cfg_scale,
|
|
|
|
unconditional_conditioning=uc,
|
2022-10-24 00:08:55 +00:00
|
|
|
extra_conditioning_info=extra_conditioning_info,
|
|
|
|
all_timesteps_count=steps
|
2022-09-29 22:58:06 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
if self.free_gpu_mem:
|
|
|
|
self.model.model.to("cpu")
|
|
|
|
|
|
|
|
return self.sample_to_image(samples)
|
|
|
|
|
2022-10-27 05:51:35 +00:00
|
|
|
# in the case of the inpainting model being loaded, the trick of
|
|
|
|
# providing an interpolated latent doesn't work, so we transiently
|
|
|
|
# create a 512x512 PIL image, upscale it, and run the inpainting
|
|
|
|
# over it in img2img mode. Because the inpaing model is so conservative
|
|
|
|
# it doesn't change the image (much)
|
|
|
|
def inpaint_make_image(x_T):
|
|
|
|
omnibus = Omnibus(self.model,self.precision)
|
|
|
|
result = omnibus.generate(
|
|
|
|
prompt,
|
|
|
|
sampler=sampler,
|
|
|
|
width=init_width,
|
|
|
|
height=init_height,
|
|
|
|
step_callback=step_callback,
|
|
|
|
steps = steps,
|
|
|
|
cfg_scale = cfg_scale,
|
|
|
|
ddim_eta = ddim_eta,
|
|
|
|
conditioning = conditioning,
|
|
|
|
**kwargs
|
|
|
|
)
|
|
|
|
assert result is not None and len(result)>0,'** txt2img failed **'
|
|
|
|
image = result[0][0]
|
|
|
|
interpolated_image = image.resize((width,height),resample=Image.Resampling.LANCZOS)
|
|
|
|
print(kwargs.pop('init_image',None))
|
|
|
|
result = omnibus.generate(
|
|
|
|
prompt,
|
|
|
|
sampler=sampler,
|
|
|
|
init_image=interpolated_image,
|
|
|
|
width=width,
|
|
|
|
height=height,
|
|
|
|
seed=result[0][1],
|
|
|
|
step_callback=step_callback,
|
|
|
|
steps = steps,
|
|
|
|
cfg_scale = cfg_scale,
|
|
|
|
ddim_eta = ddim_eta,
|
|
|
|
conditioning = conditioning,
|
|
|
|
**kwargs
|
|
|
|
)
|
|
|
|
return result[0][0]
|
|
|
|
|
|
|
|
if sampler.uses_inpainting_model():
|
|
|
|
return inpaint_make_image
|
|
|
|
else:
|
|
|
|
return make_image
|
2022-09-29 22:58:06 +00:00
|
|
|
|
|
|
|
# returns a tensor filled with random numbers from a normal distribution
|
2022-10-05 16:31:04 +00:00
|
|
|
def get_noise(self,width,height,scale = True):
|
|
|
|
# print(f"Get noise: {width}x{height}")
|
|
|
|
if scale:
|
|
|
|
trained_square = 512 * 512
|
|
|
|
actual_square = width * height
|
|
|
|
scale = math.sqrt(trained_square / actual_square)
|
|
|
|
scaled_width = math.ceil(scale * width / 64) * 64
|
|
|
|
scaled_height = math.ceil(scale * height / 64) * 64
|
|
|
|
else:
|
|
|
|
scaled_width = width
|
|
|
|
scaled_height = height
|
2022-10-26 01:59:13 +00:00
|
|
|
|
2022-09-29 22:58:06 +00:00
|
|
|
device = self.model.device
|
2022-10-07 20:52:14 +00:00
|
|
|
if self.use_mps_noise or device.type == 'mps':
|
2022-09-29 22:58:06 +00:00
|
|
|
return torch.randn([1,
|
|
|
|
self.latent_channels,
|
2022-10-05 16:31:04 +00:00
|
|
|
scaled_height // self.downsampling_factor,
|
|
|
|
scaled_width // self.downsampling_factor],
|
2022-09-29 22:58:06 +00:00
|
|
|
device='cpu').to(device)
|
|
|
|
else:
|
|
|
|
return torch.randn([1,
|
|
|
|
self.latent_channels,
|
2022-10-05 16:31:04 +00:00
|
|
|
scaled_height // self.downsampling_factor,
|
|
|
|
scaled_width // self.downsampling_factor],
|
2022-09-29 22:58:06 +00:00
|
|
|
device=device)
|
2022-10-27 05:51:35 +00:00
|
|
|
|