2022-09-16 17:18:15 +00:00
|
|
|
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
from argparse import ArgumentParser
|
2022-09-16 17:18:15 +00:00
|
|
|
import base64
|
2022-09-16 20:35:34 +00:00
|
|
|
from datetime import datetime, timezone
|
|
|
|
import glob
|
|
|
|
import json
|
2022-09-16 17:18:15 +00:00
|
|
|
import os
|
2022-09-16 20:35:34 +00:00
|
|
|
from pathlib import Path
|
2022-09-16 17:18:15 +00:00
|
|
|
from queue import Empty, Queue
|
2022-09-16 20:35:34 +00:00
|
|
|
import shlex
|
2022-09-16 17:18:15 +00:00
|
|
|
from threading import Thread
|
|
|
|
import time
|
|
|
|
from flask_socketio import SocketIO, join_room, leave_room
|
2022-10-08 15:37:23 +00:00
|
|
|
from ldm.invoke.args import Args
|
|
|
|
from ldm.invoke.generator import embiggen
|
2022-09-16 20:35:34 +00:00
|
|
|
from PIL import Image
|
2022-09-16 17:18:15 +00:00
|
|
|
|
2022-10-08 15:37:23 +00:00
|
|
|
from ldm.invoke.pngwriter import PngWriter
|
|
|
|
from ldm.invoke.server import CanceledException
|
2022-09-16 17:18:15 +00:00
|
|
|
from ldm.generate import Generate
|
2022-09-16 20:35:34 +00:00
|
|
|
from server.models import DreamResult, JobRequest, PaginatedItems, ProgressType, Signal
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
class JobQueueService:
|
|
|
|
__queue: Queue = Queue()
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
def push(self, dreamRequest: DreamResult):
|
2022-09-16 17:18:15 +00:00
|
|
|
self.__queue.put(dreamRequest)
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
def get(self, timeout: float = None) -> DreamResult:
|
2022-09-16 17:18:15 +00:00
|
|
|
return self.__queue.get(timeout= timeout)
|
|
|
|
|
|
|
|
class SignalQueueService:
|
|
|
|
__queue: Queue = Queue()
|
|
|
|
|
|
|
|
def push(self, signal: Signal):
|
|
|
|
self.__queue.put(signal)
|
|
|
|
|
|
|
|
def get(self) -> Signal:
|
|
|
|
return self.__queue.get(block=False)
|
|
|
|
|
|
|
|
|
|
|
|
class SignalService:
|
|
|
|
__socketio: SocketIO
|
|
|
|
__queue: SignalQueueService
|
|
|
|
|
|
|
|
def __init__(self, socketio: SocketIO, queue: SignalQueueService):
|
|
|
|
self.__socketio = socketio
|
|
|
|
self.__queue = queue
|
|
|
|
|
|
|
|
def on_join(data):
|
|
|
|
room = data['room']
|
|
|
|
join_room(room)
|
|
|
|
self.__socketio.emit("test", "something", room=room)
|
|
|
|
|
|
|
|
def on_leave(data):
|
|
|
|
room = data['room']
|
|
|
|
leave_room(room)
|
|
|
|
|
|
|
|
self.__socketio.on_event('join_room', on_join)
|
|
|
|
self.__socketio.on_event('leave_room', on_leave)
|
|
|
|
|
|
|
|
self.__socketio.start_background_task(self.__process)
|
|
|
|
|
|
|
|
def __process(self):
|
|
|
|
# preload the model
|
|
|
|
print('Started signal queue processor')
|
|
|
|
try:
|
|
|
|
while True:
|
|
|
|
try:
|
|
|
|
signal = self.__queue.get()
|
|
|
|
self.__socketio.emit(signal.event, signal.data, room=signal.room, broadcast=signal.broadcast)
|
|
|
|
except Empty:
|
|
|
|
pass
|
|
|
|
finally:
|
|
|
|
self.__socketio.sleep(0.001)
|
|
|
|
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
print('Signal queue processor stopped')
|
|
|
|
|
|
|
|
|
|
|
|
def emit(self, signal: Signal):
|
|
|
|
self.__queue.push(signal)
|
|
|
|
|
|
|
|
|
|
|
|
# TODO: Name this better?
|
|
|
|
# TODO: Logging and signals should probably be event based (multiple listeners for an event)
|
|
|
|
class LogService:
|
|
|
|
__location: str
|
|
|
|
__logFile: str
|
|
|
|
|
|
|
|
def __init__(self, location:str, file:str):
|
|
|
|
self.__location = location
|
|
|
|
self.__logFile = file
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
def log(self, dreamResult: DreamResult, seed = None, upscaled = False):
|
2022-09-16 17:18:15 +00:00
|
|
|
with open(os.path.join(self.__location, self.__logFile), "a") as log:
|
2022-09-16 20:35:34 +00:00
|
|
|
log.write(f"{dreamResult.id}: {dreamResult.to_json()}\n")
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ImageStorageService:
|
|
|
|
__location: str
|
|
|
|
__pngWriter: PngWriter
|
2022-09-16 20:35:34 +00:00
|
|
|
__legacyParser: ArgumentParser
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
def __init__(self, location):
|
|
|
|
self.__location = location
|
|
|
|
self.__pngWriter = PngWriter(self.__location)
|
2022-09-16 20:35:34 +00:00
|
|
|
self.__legacyParser = Args() # TODO: inject this?
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
def __getName(self, dreamId: str, postfix: str = '') -> str:
|
|
|
|
return f'{dreamId}{postfix}.png'
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
def save(self, image, dreamResult: DreamResult, postfix: str = '') -> str:
|
|
|
|
name = self.__getName(dreamResult.id, postfix)
|
|
|
|
meta = dreamResult.to_json() # TODO: make all methods consistent with writing metadata. Standardize metadata.
|
|
|
|
path = self.__pngWriter.save_image_and_prompt_to_png(image, dream_prompt=meta, metadata=None, name=name)
|
2022-09-16 17:18:15 +00:00
|
|
|
return path
|
|
|
|
|
|
|
|
def path(self, dreamId: str, postfix: str = '') -> str:
|
|
|
|
name = self.__getName(dreamId, postfix)
|
|
|
|
path = os.path.join(self.__location, name)
|
|
|
|
return path
|
2022-09-16 20:35:34 +00:00
|
|
|
|
|
|
|
# Returns true if found, false if not found or error
|
|
|
|
def delete(self, dreamId: str, postfix: str = '') -> bool:
|
|
|
|
path = self.path(dreamId, postfix)
|
|
|
|
if (os.path.exists(path)):
|
|
|
|
os.remove(path)
|
|
|
|
return True
|
|
|
|
else:
|
|
|
|
return False
|
|
|
|
|
|
|
|
def getMetadata(self, dreamId: str, postfix: str = '') -> DreamResult:
|
|
|
|
path = self.path(dreamId, postfix)
|
|
|
|
image = Image.open(path)
|
|
|
|
text = image.text
|
|
|
|
if text.__contains__('Dream'):
|
|
|
|
dreamMeta = text.get('Dream')
|
|
|
|
try:
|
|
|
|
j = json.loads(dreamMeta)
|
|
|
|
return DreamResult.from_json(j)
|
|
|
|
except ValueError:
|
|
|
|
# Try to parse command-line format (legacy metadata format)
|
|
|
|
try:
|
|
|
|
opt = self.__parseLegacyMetadata(dreamMeta)
|
|
|
|
optd = opt.__dict__
|
|
|
|
if (not 'width' in optd) or (optd.get('width') is None):
|
|
|
|
optd['width'] = image.width
|
|
|
|
if (not 'height' in optd) or (optd.get('height') is None):
|
|
|
|
optd['height'] = image.height
|
|
|
|
if (not 'steps' in optd) or (optd.get('steps') is None):
|
|
|
|
optd['steps'] = 10 # No way around this unfortunately - seems like it wasn't storing this previously
|
|
|
|
|
|
|
|
optd['time'] = os.path.getmtime(path) # Set timestamp manually (won't be exactly correct though)
|
|
|
|
|
|
|
|
return DreamResult.from_json(optd)
|
|
|
|
|
|
|
|
except:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
|
|
def __parseLegacyMetadata(self, command: str) -> DreamResult:
|
|
|
|
# before splitting, escape single quotes so as not to mess
|
|
|
|
# up the parser
|
|
|
|
command = command.replace("'", "\\'")
|
|
|
|
|
|
|
|
try:
|
|
|
|
elements = shlex.split(command)
|
|
|
|
except ValueError as e:
|
|
|
|
return None
|
|
|
|
|
|
|
|
# rearrange the arguments to mimic how it works in the Dream bot.
|
|
|
|
switches = ['']
|
|
|
|
switches_started = False
|
|
|
|
|
|
|
|
for el in elements:
|
|
|
|
if el[0] == '-' and not switches_started:
|
|
|
|
switches_started = True
|
|
|
|
if switches_started:
|
|
|
|
switches.append(el)
|
|
|
|
else:
|
|
|
|
switches[0] += el
|
|
|
|
switches[0] += ' '
|
|
|
|
switches[0] = switches[0][: len(switches[0]) - 1]
|
|
|
|
|
|
|
|
try:
|
|
|
|
opt = self.__legacyParser.parse_cmd(switches)
|
|
|
|
return opt
|
|
|
|
except SystemExit:
|
|
|
|
return None
|
|
|
|
|
|
|
|
def list_files(self, page: int, perPage: int) -> PaginatedItems:
|
|
|
|
files = sorted(glob.glob(os.path.join(self.__location,'*.png')), key=os.path.getmtime, reverse=True)
|
|
|
|
count = len(files)
|
|
|
|
|
|
|
|
startId = page * perPage
|
|
|
|
pageCount = int(count / perPage) + 1
|
|
|
|
endId = min(startId + perPage, count)
|
|
|
|
items = [] if startId >= count else files[startId:endId]
|
|
|
|
|
|
|
|
items = list(map(lambda f: Path(f).stem, items))
|
|
|
|
|
|
|
|
return PaginatedItems(items, page, pageCount, perPage, count)
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
|
|
|
|
class GeneratorService:
|
|
|
|
__model: Generate
|
|
|
|
__queue: JobQueueService
|
|
|
|
__imageStorage: ImageStorageService
|
|
|
|
__intermediateStorage: ImageStorageService
|
|
|
|
__log: LogService
|
|
|
|
__thread: Thread
|
|
|
|
__cancellationRequested: bool = False
|
|
|
|
__signal_service: SignalService
|
|
|
|
|
|
|
|
def __init__(self, model: Generate, queue: JobQueueService, imageStorage: ImageStorageService, intermediateStorage: ImageStorageService, log: LogService, signal_service: SignalService):
|
|
|
|
self.__model = model
|
|
|
|
self.__queue = queue
|
|
|
|
self.__imageStorage = imageStorage
|
|
|
|
self.__intermediateStorage = intermediateStorage
|
|
|
|
self.__log = log
|
|
|
|
self.__signal_service = signal_service
|
|
|
|
|
|
|
|
# Create the background thread
|
|
|
|
self.__thread = Thread(target=self.__process, name = "GeneratorService")
|
|
|
|
self.__thread.daemon = True
|
|
|
|
self.__thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
# Request cancellation of the current job
|
|
|
|
def cancel(self):
|
|
|
|
self.__cancellationRequested = True
|
|
|
|
|
|
|
|
|
|
|
|
# TODO: Consider moving this to its own service if there's benefit in separating the generator
|
|
|
|
def __process(self):
|
|
|
|
# preload the model
|
2022-09-16 20:35:34 +00:00
|
|
|
# TODO: support multiple models
|
2022-09-16 17:18:15 +00:00
|
|
|
print('Preloading model')
|
|
|
|
tic = time.time()
|
|
|
|
self.__model.load_model()
|
2022-09-16 20:35:34 +00:00
|
|
|
print(f'>> model loaded in', '%4.2fs' % (time.time() - tic))
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
print('Started generation queue processor')
|
|
|
|
try:
|
|
|
|
while True:
|
|
|
|
dreamRequest = self.__queue.get()
|
|
|
|
self.__generate(dreamRequest)
|
|
|
|
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
print('Generation queue processor stopped')
|
|
|
|
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
def __on_start(self, jobRequest: JobRequest):
|
|
|
|
self.__signal_service.emit(Signal.job_started(jobRequest.id))
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
def __on_image_result(self, jobRequest: JobRequest, image, seed, upscaled=False):
|
|
|
|
dreamResult = jobRequest.newDreamResult()
|
|
|
|
dreamResult.seed = seed
|
|
|
|
dreamResult.has_upscaled = upscaled
|
|
|
|
dreamResult.iterations = 1
|
|
|
|
jobRequest.results.append(dreamResult)
|
|
|
|
# TODO: Separate status of GFPGAN?
|
2022-09-16 17:18:15 +00:00
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
self.__imageStorage.save(image, dreamResult)
|
|
|
|
|
2022-09-16 17:18:15 +00:00
|
|
|
# TODO: handle upscaling logic better (this is appending data to log, but only on first generation)
|
|
|
|
if not upscaled:
|
2022-09-16 20:35:34 +00:00
|
|
|
self.__log.log(dreamResult)
|
2022-09-16 17:18:15 +00:00
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
# Send result signal
|
|
|
|
self.__signal_service.emit(Signal.image_result(jobRequest.id, dreamResult.id, dreamResult))
|
2022-09-16 17:18:15 +00:00
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
upscaling_requested = dreamResult.enable_upscale or dreamResult.enable_gfpgan
|
2022-09-16 17:18:15 +00:00
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
# Report upscaling status
|
|
|
|
# TODO: this is very coupled to logic inside the generator. Fix that.
|
|
|
|
if upscaling_requested and any(result.has_upscaled for result in jobRequest.results):
|
|
|
|
progressType = ProgressType.UPSCALING_STARTED if len(jobRequest.results) < 2 * jobRequest.iterations else ProgressType.UPSCALING_DONE
|
|
|
|
upscale_count = sum(1 for i in jobRequest.results if i.has_upscaled)
|
|
|
|
self.__signal_service.emit(Signal.image_progress(jobRequest.id, dreamResult.id, upscale_count, jobRequest.iterations, progressType))
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
def __on_progress(self, jobRequest: JobRequest, sample, step):
|
2022-09-16 17:18:15 +00:00
|
|
|
if self.__cancellationRequested:
|
|
|
|
self.__cancellationRequested = False
|
|
|
|
raise CanceledException
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
# TODO: Progress per request will be easier once the seeds (and ids) can all be pre-generated
|
2022-09-16 17:18:15 +00:00
|
|
|
hasProgressImage = False
|
2022-09-16 20:35:34 +00:00
|
|
|
s = str(len(jobRequest.results))
|
|
|
|
if jobRequest.progress_images and step % 5 == 0 and step < jobRequest.steps - 1:
|
2022-09-16 17:18:15 +00:00
|
|
|
image = self.__model._sample_to_image(sample)
|
2022-09-16 20:35:34 +00:00
|
|
|
|
|
|
|
# TODO: clean this up, use a pre-defined dream result
|
|
|
|
result = DreamResult()
|
|
|
|
result.parse_json(jobRequest.__dict__, new_instance=False)
|
|
|
|
self.__intermediateStorage.save(image, result, postfix=f'.{s}.{step}')
|
2022-09-16 17:18:15 +00:00
|
|
|
hasProgressImage = True
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
self.__signal_service.emit(Signal.image_progress(jobRequest.id, f'{jobRequest.id}.{s}', step, jobRequest.steps, ProgressType.GENERATION, hasProgressImage))
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
|
2022-09-16 20:35:34 +00:00
|
|
|
def __generate(self, jobRequest: JobRequest):
|
2022-09-16 17:18:15 +00:00
|
|
|
try:
|
2022-09-16 20:35:34 +00:00
|
|
|
# TODO: handle this file a file service for init images
|
|
|
|
initimgfile = None # TODO: support this on the model directly?
|
|
|
|
if (jobRequest.enable_init_image):
|
|
|
|
if jobRequest.initimg is not None:
|
|
|
|
with open("./img2img-tmp.png", "wb") as f:
|
|
|
|
initimg = jobRequest.initimg.split(",")[1] # Ignore mime type
|
|
|
|
f.write(base64.b64decode(initimg))
|
|
|
|
initimgfile = "./img2img-tmp.png"
|
|
|
|
|
|
|
|
# Use previous seed if set to -1
|
|
|
|
initSeed = jobRequest.seed
|
|
|
|
if initSeed == -1:
|
|
|
|
initSeed = self.__model.seed
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
# Zero gfpgan strength if the model doesn't exist
|
|
|
|
# TODO: determine if this could be at the top now? Used to cause circular import
|
|
|
|
from ldm.gfpgan.gfpgan_tools import gfpgan_model_exists
|
|
|
|
if not gfpgan_model_exists:
|
2022-09-16 20:35:34 +00:00
|
|
|
jobRequest.enable_gfpgan = False
|
|
|
|
|
|
|
|
# Signal start
|
|
|
|
self.__on_start(jobRequest)
|
|
|
|
|
|
|
|
# Generate in model
|
|
|
|
# TODO: Split job generation requests instead of fitting all parameters here
|
|
|
|
# TODO: Support no generation (just upscaling/gfpgan)
|
|
|
|
|
|
|
|
upscale = None if not jobRequest.enable_upscale else jobRequest.upscale
|
|
|
|
gfpgan_strength = 0 if not jobRequest.enable_gfpgan else jobRequest.gfpgan_strength
|
|
|
|
|
|
|
|
if not jobRequest.enable_generate:
|
|
|
|
# If not generating, check if we're upscaling or running gfpgan
|
|
|
|
if not upscale and not gfpgan_strength:
|
|
|
|
# Invalid settings (TODO: Add message to help user)
|
|
|
|
raise CanceledException()
|
|
|
|
|
|
|
|
image = Image.open(initimgfile)
|
|
|
|
# TODO: support progress for upscale?
|
|
|
|
self.__model.upscale_and_reconstruct(
|
|
|
|
image_list = [[image,0]],
|
|
|
|
upscale = upscale,
|
|
|
|
strength = gfpgan_strength,
|
|
|
|
save_original = False,
|
|
|
|
image_callback = lambda image, seed, upscaled=False: self.__on_image_result(jobRequest, image, seed, upscaled))
|
|
|
|
|
|
|
|
else:
|
|
|
|
# Generating - run the generation
|
|
|
|
init_img = None if (not jobRequest.enable_img2img or jobRequest.strength == 0) else initimgfile
|
|
|
|
|
|
|
|
|
|
|
|
self.__model.prompt2image(
|
|
|
|
prompt = jobRequest.prompt,
|
|
|
|
init_img = init_img, # TODO: ensure this works
|
|
|
|
strength = None if init_img is None else jobRequest.strength,
|
|
|
|
fit = None if init_img is None else jobRequest.fit,
|
|
|
|
iterations = jobRequest.iterations,
|
|
|
|
cfg_scale = jobRequest.cfg_scale,
|
2022-09-28 23:47:36 +00:00
|
|
|
threshold = jobRequest.threshold,
|
|
|
|
perlin = jobRequest.perlin,
|
2022-09-16 20:35:34 +00:00
|
|
|
width = jobRequest.width,
|
|
|
|
height = jobRequest.height,
|
|
|
|
seed = jobRequest.seed,
|
|
|
|
steps = jobRequest.steps,
|
|
|
|
variation_amount = jobRequest.variation_amount,
|
|
|
|
with_variations = jobRequest.with_variations,
|
|
|
|
gfpgan_strength = gfpgan_strength,
|
|
|
|
upscale = upscale,
|
|
|
|
sampler_name = jobRequest.sampler_name,
|
|
|
|
seamless = jobRequest.seamless,
|
|
|
|
embiggen = jobRequest.embiggen,
|
|
|
|
embiggen_tiles = jobRequest.embiggen_tiles,
|
|
|
|
step_callback = lambda sample, step: self.__on_progress(jobRequest, sample, step),
|
|
|
|
image_callback = lambda image, seed, upscaled=False: self.__on_image_result(jobRequest, image, seed, upscaled))
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
except CanceledException:
|
2022-09-16 20:35:34 +00:00
|
|
|
self.__signal_service.emit(Signal.job_canceled(jobRequest.id))
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
finally:
|
2022-09-16 20:35:34 +00:00
|
|
|
self.__signal_service.emit(Signal.job_done(jobRequest.id))
|
2022-09-16 17:18:15 +00:00
|
|
|
|
|
|
|
# Remove the temp file
|
|
|
|
if (initimgfile is not None):
|
|
|
|
os.remove("./img2img-tmp.png")
|