mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
85 lines
2.0 KiB
YAML
85 lines
2.0 KiB
YAML
|
model:
|
||
|
base_learning_rate: 2.0e-06
|
||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||
|
params:
|
||
|
linear_start: 0.0015
|
||
|
linear_end: 0.0195
|
||
|
num_timesteps_cond: 1
|
||
|
log_every_t: 200
|
||
|
timesteps: 1000
|
||
|
first_stage_key: image
|
||
|
image_size: 64
|
||
|
channels: 3
|
||
|
monitor: val/loss_simple_ema
|
||
|
unet_config:
|
||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||
|
params:
|
||
|
image_size: 64
|
||
|
in_channels: 3
|
||
|
out_channels: 3
|
||
|
model_channels: 224
|
||
|
attention_resolutions:
|
||
|
# note: this isn\t actually the resolution but
|
||
|
# the downsampling factor, i.e. this corresnponds to
|
||
|
# attention on spatial resolution 8,16,32, as the
|
||
|
# spatial reolution of the latents is 64 for f4
|
||
|
- 8
|
||
|
- 4
|
||
|
- 2
|
||
|
num_res_blocks: 2
|
||
|
channel_mult:
|
||
|
- 1
|
||
|
- 2
|
||
|
- 3
|
||
|
- 4
|
||
|
num_head_channels: 32
|
||
|
first_stage_config:
|
||
|
target: ldm.models.autoencoder.VQModelInterface
|
||
|
params:
|
||
|
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
|
||
|
embed_dim: 3
|
||
|
n_embed: 8192
|
||
|
ddconfig:
|
||
|
double_z: false
|
||
|
z_channels: 3
|
||
|
resolution: 256
|
||
|
in_channels: 3
|
||
|
out_ch: 3
|
||
|
ch: 128
|
||
|
ch_mult:
|
||
|
- 1
|
||
|
- 2
|
||
|
- 4
|
||
|
num_res_blocks: 2
|
||
|
attn_resolutions: []
|
||
|
dropout: 0.0
|
||
|
lossconfig:
|
||
|
target: torch.nn.Identity
|
||
|
cond_stage_config: __is_unconditional__
|
||
|
data:
|
||
|
target: main.DataModuleFromConfig
|
||
|
params:
|
||
|
batch_size: 48
|
||
|
num_workers: 5
|
||
|
wrap: false
|
||
|
train:
|
||
|
target: ldm.data.lsun.LSUNBedroomsTrain
|
||
|
params:
|
||
|
size: 256
|
||
|
validation:
|
||
|
target: ldm.data.lsun.LSUNBedroomsValidation
|
||
|
params:
|
||
|
size: 256
|
||
|
|
||
|
|
||
|
lightning:
|
||
|
callbacks:
|
||
|
image_logger:
|
||
|
target: main.ImageLogger
|
||
|
params:
|
||
|
batch_frequency: 5000
|
||
|
max_images: 8
|
||
|
increase_log_steps: False
|
||
|
|
||
|
trainer:
|
||
|
benchmark: True
|