InvokeAI/invokeai/app/models/metadata.py

92 lines
3.5 KiB
Python
Raw Normal View History

from typing import Optional
2023-05-22 05:48:12 +00:00
from pydantic import BaseModel, Extra, Field, StrictFloat, StrictInt, StrictStr
2023-05-21 12:15:44 +00:00
class ImageMetadata(BaseModel):
"""
Core generation metadata for an image/tensor generated in InvokeAI.
Also includes any metadata from the image's PNG tEXt chunks.
2023-05-22 05:48:12 +00:00
Generated by traversing the execution graph, collecting the parameters of the nearest ancestors
of a given node.
Full metadata may be accessed by querying for the session in the `graph_executions` table.
"""
2023-05-22 05:48:12 +00:00
class Config:
extra = Extra.allow
"""
This lets the ImageMetadata class accept arbitrary additional fields. The CoreMetadataService
won't add any fields that are not already defined, but other a different metadata service
implementation might.
"""
type: Optional[StrictStr] = Field(
default=None,
description="The type of the ancestor node of the image output node.",
)
"""The type of the ancestor node of the image output node."""
positive_conditioning: Optional[StrictStr] = Field(
default=None, description="The positive conditioning."
)
"""The positive conditioning"""
negative_conditioning: Optional[StrictStr] = Field(
default=None, description="The negative conditioning."
)
"""The negative conditioning"""
width: Optional[StrictInt] = Field(
2023-05-22 05:48:12 +00:00
default=None, description="Width of the image/latents in pixels."
)
"""Width of the image/latents in pixels"""
height: Optional[StrictInt] = Field(
2023-05-22 05:48:12 +00:00
default=None, description="Height of the image/latents in pixels."
)
"""Height of the image/latents in pixels"""
seed: Optional[StrictInt] = Field(
default=None, description="The seed used for noise generation."
)
"""The seed used for noise generation"""
cfg_scale: Optional[StrictFloat] = Field(
default=None, description="The classifier-free guidance scale."
)
"""The classifier-free guidance scale"""
steps: Optional[StrictInt] = Field(
default=None, description="The number of steps used for inference."
)
"""The number of steps used for inference"""
scheduler: Optional[StrictStr] = Field(
default=None, description="The scheduler used for inference."
)
"""The scheduler used for inference"""
model: Optional[StrictStr] = Field(
default=None, description="The model used for inference."
)
"""The model used for inference"""
strength: Optional[StrictFloat] = Field(
default=None,
2023-05-22 05:48:12 +00:00
description="The strength used for image-to-image/latents-to-latents.",
)
"""The strength used for image-to-image/latents-to-latents."""
2023-05-22 05:48:12 +00:00
latents: Optional[StrictStr] = Field(
default=None, description="The ID of the initial latents."
)
"""The ID of the initial latents"""
2023-05-22 05:48:12 +00:00
vae: Optional[StrictStr] = Field(
default=None, description="The VAE used for decoding."
)
"""The VAE used for decoding"""
2023-05-22 05:48:12 +00:00
unet: Optional[StrictStr] = Field(
default=None, description="The UNet used dor inference."
)
"""The UNet used dor inference"""
2023-05-22 05:48:12 +00:00
clip: Optional[StrictStr] = Field(
default=None, description="The CLIP Encoder used for conditioning."
)
"""The CLIP Encoder used for conditioning"""
extra: Optional[StrictStr] = Field(
2023-05-22 05:48:12 +00:00
default=None,
description="Uploaded image metadata, extracted from the PNG tEXt chunk.",
)
"""Uploaded image metadata, extracted from the PNG tEXt chunk."""