mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
696 lines
29 KiB
Python
696 lines
29 KiB
Python
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
||
|
|
||
|
# Derived from source code carrying the following copyrights
|
||
|
# Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
|
||
|
# Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors
|
||
|
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
import random
|
||
|
import os
|
||
|
import time
|
||
|
import re
|
||
|
import sys
|
||
|
import traceback
|
||
|
import transformers
|
||
|
|
||
|
from omegaconf import OmegaConf
|
||
|
from PIL import Image, ImageOps
|
||
|
from torch import nn
|
||
|
from pytorch_lightning import seed_everything
|
||
|
|
||
|
from ldm.util import instantiate_from_config
|
||
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||
|
from ldm.models.diffusion.plms import PLMSSampler
|
||
|
from ldm.models.diffusion.ksampler import KSampler
|
||
|
from ldm.dream.pngwriter import PngWriter
|
||
|
from ldm.dream.image_util import InitImageResizer
|
||
|
from ldm.dream.devices import choose_torch_device
|
||
|
from ldm.dream.conditioning import get_uc_and_c
|
||
|
|
||
|
"""Simplified text to image API for stable diffusion/latent diffusion
|
||
|
|
||
|
Example Usage:
|
||
|
|
||
|
from ldm.generate import Generate
|
||
|
|
||
|
# Create an object with default values
|
||
|
gr = Generate()
|
||
|
|
||
|
# do the slow model initialization
|
||
|
gr.load_model()
|
||
|
|
||
|
# Do the fast inference & image generation. Any options passed here
|
||
|
# override the default values assigned during class initialization
|
||
|
# Will call load_model() if the model was not previously loaded and so
|
||
|
# may be slow at first.
|
||
|
# The method returns a list of images. Each row of the list is a sub-list of [filename,seed]
|
||
|
results = gr.prompt2png(prompt = "an astronaut riding a horse",
|
||
|
outdir = "./outputs/samples",
|
||
|
iterations = 3)
|
||
|
|
||
|
for row in results:
|
||
|
print(f'filename={row[0]}')
|
||
|
print(f'seed ={row[1]}')
|
||
|
|
||
|
# Same thing, but using an initial image.
|
||
|
results = gr.prompt2png(prompt = "an astronaut riding a horse",
|
||
|
outdir = "./outputs/,
|
||
|
iterations = 3,
|
||
|
init_img = "./sketches/horse+rider.png")
|
||
|
|
||
|
for row in results:
|
||
|
print(f'filename={row[0]}')
|
||
|
print(f'seed ={row[1]}')
|
||
|
|
||
|
# Same thing, but we return a series of Image objects, which lets you manipulate them,
|
||
|
# combine them, and save them under arbitrary names
|
||
|
|
||
|
results = gr.prompt2image(prompt = "an astronaut riding a horse"
|
||
|
outdir = "./outputs/")
|
||
|
for row in results:
|
||
|
im = row[0]
|
||
|
seed = row[1]
|
||
|
im.save(f'./outputs/samples/an_astronaut_riding_a_horse-{seed}.png')
|
||
|
im.thumbnail(100,100).save('./outputs/samples/astronaut_thumb.jpg')
|
||
|
|
||
|
Note that the old txt2img() and img2img() calls are deprecated but will
|
||
|
still work.
|
||
|
|
||
|
The full list of arguments to Generate() are:
|
||
|
gr = Generate(
|
||
|
weights = path to model weights ('models/ldm/stable-diffusion-v1/model.ckpt')
|
||
|
config = path to model configuraiton ('configs/stable-diffusion/v1-inference.yaml')
|
||
|
iterations = <integer> // how many times to run the sampling (1)
|
||
|
steps = <integer> // 50
|
||
|
seed = <integer> // current system time
|
||
|
sampler_name= ['ddim', 'k_dpm_2_a', 'k_dpm_2', 'k_euler_a', 'k_euler', 'k_heun', 'k_lms', 'plms'] // k_lms
|
||
|
grid = <boolean> // false
|
||
|
width = <integer> // image width, multiple of 64 (512)
|
||
|
height = <integer> // image height, multiple of 64 (512)
|
||
|
cfg_scale = <float> // condition-free guidance scale (7.5)
|
||
|
)
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
class Generate:
|
||
|
"""Generate class
|
||
|
Stores default values for multiple configuration items
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
iterations = 1,
|
||
|
steps = 50,
|
||
|
cfg_scale = 7.5,
|
||
|
weights = 'models/ldm/stable-diffusion-v1/model.ckpt',
|
||
|
config = 'configs/stable-diffusion/v1-inference.yaml',
|
||
|
grid = False,
|
||
|
width = 512,
|
||
|
height = 512,
|
||
|
sampler_name = 'k_lms',
|
||
|
ddim_eta = 0.0, # deterministic
|
||
|
precision = 'autocast',
|
||
|
full_precision = False,
|
||
|
strength = 0.75, # default in scripts/img2img.py
|
||
|
seamless = False,
|
||
|
embedding_path = None,
|
||
|
device_type = 'cuda',
|
||
|
ignore_ctrl_c = False,
|
||
|
):
|
||
|
self.iterations = iterations
|
||
|
self.width = width
|
||
|
self.height = height
|
||
|
self.steps = steps
|
||
|
self.cfg_scale = cfg_scale
|
||
|
self.weights = weights
|
||
|
self.config = config
|
||
|
self.sampler_name = sampler_name
|
||
|
self.grid = grid
|
||
|
self.ddim_eta = ddim_eta
|
||
|
self.precision = precision
|
||
|
self.full_precision = True if choose_torch_device() == 'mps' else full_precision
|
||
|
self.strength = strength
|
||
|
self.seamless = seamless
|
||
|
self.embedding_path = embedding_path
|
||
|
self.device_type = device_type
|
||
|
self.ignore_ctrl_c = ignore_ctrl_c # note, this logic probably doesn't belong here...
|
||
|
self.model = None # empty for now
|
||
|
self.sampler = None
|
||
|
self.device = None
|
||
|
self.generators = {}
|
||
|
self.base_generator = None
|
||
|
self.seed = None
|
||
|
|
||
|
if device_type == 'cuda' and not torch.cuda.is_available():
|
||
|
device_type = choose_torch_device()
|
||
|
print(">> cuda not available, using device", device_type)
|
||
|
self.device = torch.device(device_type)
|
||
|
|
||
|
# for VRAM usage statistics
|
||
|
device_type = choose_torch_device()
|
||
|
self.session_peakmem = torch.cuda.max_memory_allocated() if device_type == 'cuda' else None
|
||
|
transformers.logging.set_verbosity_error()
|
||
|
|
||
|
def prompt2png(self, prompt, outdir, **kwargs):
|
||
|
"""
|
||
|
Takes a prompt and an output directory, writes out the requested number
|
||
|
of PNG files, and returns an array of [[filename,seed],[filename,seed]...]
|
||
|
Optional named arguments are the same as those passed to Generate and prompt2image()
|
||
|
"""
|
||
|
results = self.prompt2image(prompt, **kwargs)
|
||
|
pngwriter = PngWriter(outdir)
|
||
|
prefix = pngwriter.unique_prefix()
|
||
|
outputs = []
|
||
|
for image, seed in results:
|
||
|
name = f'{prefix}.{seed}.png'
|
||
|
path = pngwriter.save_image_and_prompt_to_png(
|
||
|
image, f'{prompt} -S{seed}', name)
|
||
|
outputs.append([path, seed])
|
||
|
return outputs
|
||
|
|
||
|
def txt2img(self, prompt, **kwargs):
|
||
|
outdir = kwargs.pop('outdir', 'outputs/img-samples')
|
||
|
return self.prompt2png(prompt, outdir, **kwargs)
|
||
|
|
||
|
def img2img(self, prompt, **kwargs):
|
||
|
outdir = kwargs.pop('outdir', 'outputs/img-samples')
|
||
|
assert (
|
||
|
'init_img' in kwargs
|
||
|
), 'call to img2img() must include the init_img argument'
|
||
|
return self.prompt2png(prompt, outdir, **kwargs)
|
||
|
|
||
|
def prompt2image(
|
||
|
self,
|
||
|
# these are common
|
||
|
prompt,
|
||
|
iterations = None,
|
||
|
steps = None,
|
||
|
seed = None,
|
||
|
cfg_scale = None,
|
||
|
ddim_eta = None,
|
||
|
skip_normalize = False,
|
||
|
image_callback = None,
|
||
|
step_callback = None,
|
||
|
width = None,
|
||
|
height = None,
|
||
|
sampler_name = None,
|
||
|
seamless = False,
|
||
|
log_tokenization= False,
|
||
|
with_variations = None,
|
||
|
variation_amount = 0.0,
|
||
|
# these are specific to img2img and inpaint
|
||
|
init_img = None,
|
||
|
init_mask = None,
|
||
|
fit = False,
|
||
|
strength = None,
|
||
|
# these are specific to GFPGAN/ESRGAN
|
||
|
gfpgan_strength= 0,
|
||
|
save_original = False,
|
||
|
upscale = None,
|
||
|
**args,
|
||
|
): # eat up additional cruft
|
||
|
"""
|
||
|
ldm.generate.prompt2image() is the common entry point for txt2img() and img2img()
|
||
|
It takes the following arguments:
|
||
|
prompt // prompt string (no default)
|
||
|
iterations // iterations (1); image count=iterations
|
||
|
steps // refinement steps per iteration
|
||
|
seed // seed for random number generator
|
||
|
width // width of image, in multiples of 64 (512)
|
||
|
height // height of image, in multiples of 64 (512)
|
||
|
cfg_scale // how strongly the prompt influences the image (7.5) (must be >1)
|
||
|
seamless // whether the generated image should tile
|
||
|
init_img // path to an initial image
|
||
|
strength // strength for noising/unnoising init_img. 0.0 preserves image exactly, 1.0 replaces it completely
|
||
|
gfpgan_strength // strength for GFPGAN. 0.0 preserves image exactly, 1.0 replaces it completely
|
||
|
ddim_eta // image randomness (eta=0.0 means the same seed always produces the same image)
|
||
|
step_callback // a function or method that will be called each step
|
||
|
image_callback // a function or method that will be called each time an image is generated
|
||
|
with_variations // a weighted list [(seed_1, weight_1), (seed_2, weight_2), ...] of variations which should be applied before doing any generation
|
||
|
variation_amount // optional 0-1 value to slerp from -S noise to random noise (allows variations on an image)
|
||
|
|
||
|
To use the step callback, define a function that receives two arguments:
|
||
|
- Image GPU data
|
||
|
- The step number
|
||
|
|
||
|
To use the image callback, define a function of method that receives two arguments, an Image object
|
||
|
and the seed. You can then do whatever you like with the image, including converting it to
|
||
|
different formats and manipulating it. For example:
|
||
|
|
||
|
def process_image(image,seed):
|
||
|
image.save(f{'images/seed.png'})
|
||
|
|
||
|
The callback used by the prompt2png() can be found in ldm/dream_util.py. It contains code
|
||
|
to create the requested output directory, select a unique informative name for each image, and
|
||
|
write the prompt into the PNG metadata.
|
||
|
"""
|
||
|
# TODO: convert this into a getattr() loop
|
||
|
steps = steps or self.steps
|
||
|
width = width or self.width
|
||
|
height = height or self.height
|
||
|
seamless = seamless or self.seamless
|
||
|
cfg_scale = cfg_scale or self.cfg_scale
|
||
|
ddim_eta = ddim_eta or self.ddim_eta
|
||
|
iterations = iterations or self.iterations
|
||
|
strength = strength or self.strength
|
||
|
self.seed = seed
|
||
|
self.log_tokenization = log_tokenization
|
||
|
with_variations = [] if with_variations is None else with_variations
|
||
|
|
||
|
model = (
|
||
|
self.load_model()
|
||
|
) # will instantiate the model or return it from cache
|
||
|
|
||
|
for m in model.modules():
|
||
|
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
||
|
m.padding_mode = 'circular' if seamless else m._orig_padding_mode
|
||
|
|
||
|
assert cfg_scale > 1.0, 'CFG_Scale (-C) must be >1.0'
|
||
|
assert (
|
||
|
0.0 < strength < 1.0
|
||
|
), 'img2img and inpaint strength can only work with 0.0 < strength < 1.0'
|
||
|
assert (
|
||
|
0.0 <= variation_amount <= 1.0
|
||
|
), '-v --variation_amount must be in [0.0, 1.0]'
|
||
|
|
||
|
# check this logic - doesn't look right
|
||
|
if len(with_variations) > 0 or variation_amount > 1.0:
|
||
|
assert seed is not None,\
|
||
|
'seed must be specified when using with_variations'
|
||
|
if variation_amount == 0.0:
|
||
|
assert iterations == 1,\
|
||
|
'when using --with_variations, multiple iterations are only possible when using --variation_amount'
|
||
|
assert all(0 <= weight <= 1 for _, weight in with_variations),\
|
||
|
f'variation weights must be in [0.0, 1.0]: got {[weight for _, weight in with_variations]}'
|
||
|
|
||
|
width, height, _ = self._resolution_check(width, height, log=True)
|
||
|
|
||
|
if sampler_name and (sampler_name != self.sampler_name):
|
||
|
self.sampler_name = sampler_name
|
||
|
self._set_sampler()
|
||
|
|
||
|
tic = time.time()
|
||
|
if torch.cuda.is_available():
|
||
|
torch.cuda.reset_peak_memory_stats()
|
||
|
|
||
|
results = list()
|
||
|
init_image = None
|
||
|
mask_image = None
|
||
|
|
||
|
try:
|
||
|
uc, c = get_uc_and_c(
|
||
|
prompt, model=self.model,
|
||
|
skip_normalize=skip_normalize,
|
||
|
log_tokens=self.log_tokenization
|
||
|
)
|
||
|
|
||
|
(init_image,mask_image) = self._make_images(init_img,init_mask, width, height, fit)
|
||
|
|
||
|
if (init_image is not None) and (mask_image is not None):
|
||
|
generator = self._make_inpaint()
|
||
|
elif init_image is not None:
|
||
|
generator = self._make_img2img()
|
||
|
else:
|
||
|
generator = self._make_txt2img()
|
||
|
|
||
|
generator.set_variation(self.seed, variation_amount, with_variations)
|
||
|
results = generator.generate(
|
||
|
prompt,
|
||
|
iterations = iterations,
|
||
|
seed = self.seed,
|
||
|
sampler = self.sampler,
|
||
|
steps = steps,
|
||
|
cfg_scale = cfg_scale,
|
||
|
conditioning = (uc,c),
|
||
|
ddim_eta = ddim_eta,
|
||
|
image_callback = image_callback, # called after the final image is generated
|
||
|
step_callback = step_callback, # called after each intermediate image is generated
|
||
|
width = width,
|
||
|
height = height,
|
||
|
init_image = init_image, # notice that init_image is different from init_img
|
||
|
mask_image = mask_image,
|
||
|
strength = strength,
|
||
|
)
|
||
|
|
||
|
if upscale is not None or gfpgan_strength > 0:
|
||
|
self.upscale_and_reconstruct(results,
|
||
|
upscale = upscale,
|
||
|
strength = gfpgan_strength,
|
||
|
save_original = save_original,
|
||
|
image_callback = image_callback)
|
||
|
|
||
|
except KeyboardInterrupt:
|
||
|
print('*interrupted*')
|
||
|
if not self.ignore_ctrl_c:
|
||
|
raise KeyboardInterrupt
|
||
|
print(
|
||
|
'>> Partial results will be returned; if --grid was requested, nothing will be returned.'
|
||
|
)
|
||
|
except RuntimeError as e:
|
||
|
print(traceback.format_exc(), file=sys.stderr)
|
||
|
print('>> Could not generate image.')
|
||
|
|
||
|
toc = time.time()
|
||
|
print('>> Usage stats:')
|
||
|
print(
|
||
|
f'>> {len(results)} image(s) generated in', '%4.2fs' % (toc - tic)
|
||
|
)
|
||
|
if torch.cuda.is_available() and self.device.type == 'cuda':
|
||
|
print(
|
||
|
f'>> Max VRAM used for this generation:',
|
||
|
'%4.2fG.' % (torch.cuda.max_memory_allocated() / 1e9),
|
||
|
'Current VRAM utilization:'
|
||
|
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
|
||
|
)
|
||
|
|
||
|
self.session_peakmem = max(
|
||
|
self.session_peakmem, torch.cuda.max_memory_allocated()
|
||
|
)
|
||
|
print(
|
||
|
f'>> Max VRAM used since script start: ',
|
||
|
'%4.2fG' % (self.session_peakmem / 1e9),
|
||
|
)
|
||
|
return results
|
||
|
|
||
|
def _make_images(self, img_path, mask_path, width, height, fit=False):
|
||
|
init_image = None
|
||
|
init_mask = None
|
||
|
if not img_path:
|
||
|
return None,None
|
||
|
|
||
|
image = self._load_img(img_path, width, height, fit=fit) # this returns an Image
|
||
|
init_image = self._create_init_image(image) # this returns a torch tensor
|
||
|
|
||
|
if self._has_transparency(image) and not mask_path: # if image has a transparent area and no mask was provided, then try to generate mask
|
||
|
print('>> Initial image has transparent areas. Will inpaint in these regions.')
|
||
|
if self._check_for_erasure(image):
|
||
|
print(
|
||
|
'>> WARNING: Colors underneath the transparent region seem to have been erased.\n',
|
||
|
'>> Inpainting will be suboptimal. Please preserve the colors when making\n',
|
||
|
'>> a transparency mask, or provide mask explicitly using --init_mask (-M).'
|
||
|
)
|
||
|
init_mask = self._create_init_mask(image) # this returns a torch tensor
|
||
|
|
||
|
if mask_path:
|
||
|
mask_image = self._load_img(mask_path, width, height, fit=fit) # this returns an Image
|
||
|
init_mask = self._create_init_mask(mask_image)
|
||
|
|
||
|
return init_image,init_mask
|
||
|
|
||
|
def _make_img2img(self):
|
||
|
if not self.generators.get('img2img'):
|
||
|
from ldm.dream.generator.img2img import Img2Img
|
||
|
self.generators['img2img'] = Img2Img(self.model)
|
||
|
return self.generators['img2img']
|
||
|
|
||
|
def _make_txt2img(self):
|
||
|
if not self.generators.get('txt2img'):
|
||
|
from ldm.dream.generator.txt2img import Txt2Img
|
||
|
self.generators['txt2img'] = Txt2Img(self.model)
|
||
|
return self.generators['txt2img']
|
||
|
|
||
|
def _make_inpaint(self):
|
||
|
if not self.generators.get('inpaint'):
|
||
|
from ldm.dream.generator.inpaint import Inpaint
|
||
|
self.generators['inpaint'] = Inpaint(self.model)
|
||
|
return self.generators['inpaint']
|
||
|
|
||
|
def load_model(self):
|
||
|
"""Load and initialize the model from configuration variables passed at object creation time"""
|
||
|
if self.model is None:
|
||
|
seed_everything(random.randrange(0, np.iinfo(np.uint32).max))
|
||
|
try:
|
||
|
config = OmegaConf.load(self.config)
|
||
|
model = self._load_model_from_config(config, self.weights)
|
||
|
if self.embedding_path is not None:
|
||
|
model.embedding_manager.load(
|
||
|
self.embedding_path, self.full_precision
|
||
|
)
|
||
|
self.model = model.to(self.device)
|
||
|
# model.to doesn't change the cond_stage_model.device used to move the tokenizer output, so set it here
|
||
|
self.model.cond_stage_model.device = self.device
|
||
|
except AttributeError as e:
|
||
|
print(f'>> Error loading model. {str(e)}', file=sys.stderr)
|
||
|
print(traceback.format_exc(), file=sys.stderr)
|
||
|
raise SystemExit from e
|
||
|
|
||
|
self._set_sampler()
|
||
|
|
||
|
for m in self.model.modules():
|
||
|
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
||
|
m._orig_padding_mode = m.padding_mode
|
||
|
|
||
|
return self.model
|
||
|
|
||
|
def upscale_and_reconstruct(self,
|
||
|
image_list,
|
||
|
upscale = None,
|
||
|
strength = 0.0,
|
||
|
save_original = False,
|
||
|
image_callback = None):
|
||
|
try:
|
||
|
if upscale is not None:
|
||
|
from ldm.gfpgan.gfpgan_tools import real_esrgan_upscale
|
||
|
if strength > 0:
|
||
|
from ldm.gfpgan.gfpgan_tools import run_gfpgan
|
||
|
except (ModuleNotFoundError, ImportError):
|
||
|
print(traceback.format_exc(), file=sys.stderr)
|
||
|
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
|
||
|
return
|
||
|
|
||
|
for r in image_list:
|
||
|
image, seed = r
|
||
|
try:
|
||
|
if upscale is not None:
|
||
|
if len(upscale) < 2:
|
||
|
upscale.append(0.75)
|
||
|
image = real_esrgan_upscale(
|
||
|
image,
|
||
|
upscale[1],
|
||
|
int(upscale[0]),
|
||
|
seed,
|
||
|
)
|
||
|
if strength > 0:
|
||
|
image = run_gfpgan(
|
||
|
image, strength, seed, 1
|
||
|
)
|
||
|
except Exception as e:
|
||
|
print(
|
||
|
f'>> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}'
|
||
|
)
|
||
|
|
||
|
if image_callback is not None:
|
||
|
image_callback(image, seed, upscaled=True)
|
||
|
else:
|
||
|
r[0] = image
|
||
|
|
||
|
# to help WebGUI - front end to generator util function
|
||
|
def sample_to_image(self,samples):
|
||
|
return self._sample_to_image(samples)
|
||
|
|
||
|
def _sample_to_image(self,samples):
|
||
|
if not self.base_generator:
|
||
|
from ldm.dream.generator import Generator
|
||
|
self.base_generator = Generator(self.model)
|
||
|
return self.base_generator.sample_to_image(samples)
|
||
|
|
||
|
def _set_sampler(self):
|
||
|
msg = f'>> Setting Sampler to {self.sampler_name}'
|
||
|
if self.sampler_name == 'plms':
|
||
|
self.sampler = PLMSSampler(self.model, device=self.device)
|
||
|
elif self.sampler_name == 'ddim':
|
||
|
self.sampler = DDIMSampler(self.model, device=self.device)
|
||
|
elif self.sampler_name == 'k_dpm_2_a':
|
||
|
self.sampler = KSampler(
|
||
|
self.model, 'dpm_2_ancestral', device=self.device
|
||
|
)
|
||
|
elif self.sampler_name == 'k_dpm_2':
|
||
|
self.sampler = KSampler(self.model, 'dpm_2', device=self.device)
|
||
|
elif self.sampler_name == 'k_euler_a':
|
||
|
self.sampler = KSampler(
|
||
|
self.model, 'euler_ancestral', device=self.device
|
||
|
)
|
||
|
elif self.sampler_name == 'k_euler':
|
||
|
self.sampler = KSampler(self.model, 'euler', device=self.device)
|
||
|
elif self.sampler_name == 'k_heun':
|
||
|
self.sampler = KSampler(self.model, 'heun', device=self.device)
|
||
|
elif self.sampler_name == 'k_lms':
|
||
|
self.sampler = KSampler(self.model, 'lms', device=self.device)
|
||
|
else:
|
||
|
msg = f'>> Unsupported Sampler: {self.sampler_name}, Defaulting to plms'
|
||
|
self.sampler = PLMSSampler(self.model, device=self.device)
|
||
|
|
||
|
print(msg)
|
||
|
|
||
|
def _load_model_from_config(self, config, ckpt):
|
||
|
print(f'>> Loading model from {ckpt}')
|
||
|
|
||
|
# for usage statistics
|
||
|
device_type = choose_torch_device()
|
||
|
if device_type == 'cuda':
|
||
|
torch.cuda.reset_peak_memory_stats()
|
||
|
tic = time.time()
|
||
|
|
||
|
# this does the work
|
||
|
pl_sd = torch.load(ckpt, map_location='cpu')
|
||
|
sd = pl_sd['state_dict']
|
||
|
model = instantiate_from_config(config.model)
|
||
|
m, u = model.load_state_dict(sd, strict=False)
|
||
|
|
||
|
if self.full_precision:
|
||
|
print(
|
||
|
'>> Using slower but more accurate full-precision math (--full_precision)'
|
||
|
)
|
||
|
else:
|
||
|
print(
|
||
|
'>> Using half precision math. Call with --full_precision to use more accurate but VRAM-intensive full precision.'
|
||
|
)
|
||
|
model.half()
|
||
|
model.to(self.device)
|
||
|
model.eval()
|
||
|
|
||
|
# usage statistics
|
||
|
toc = time.time()
|
||
|
print(
|
||
|
f'>> Model loaded in', '%4.2fs' % (toc - tic)
|
||
|
)
|
||
|
if device_type == 'cuda':
|
||
|
print(
|
||
|
'>> Max VRAM used to load the model:',
|
||
|
'%4.2fG' % (torch.cuda.max_memory_allocated() / 1e9),
|
||
|
'\n>> Current VRAM usage:'
|
||
|
'%4.2fG' % (torch.cuda.memory_allocated() / 1e9),
|
||
|
)
|
||
|
|
||
|
return model
|
||
|
|
||
|
def _load_img(self, path, width, height, fit=False):
|
||
|
assert os.path.exists(path), f'>> {path}: File not found'
|
||
|
|
||
|
# with Image.open(path) as img:
|
||
|
# image = img.convert('RGBA')
|
||
|
image = Image.open(path)
|
||
|
print(
|
||
|
f'>> loaded input image of size {image.width}x{image.height} from {path}'
|
||
|
)
|
||
|
if fit:
|
||
|
image = self._fit_image(image,(width,height))
|
||
|
else:
|
||
|
image = self._squeeze_image(image)
|
||
|
return image
|
||
|
|
||
|
def _create_init_image(self,image):
|
||
|
image = image.convert('RGB')
|
||
|
# print(
|
||
|
# f'>> DEBUG: writing the image to img.png'
|
||
|
# )
|
||
|
# image.save('img.png')
|
||
|
image = np.array(image).astype(np.float32) / 255.0
|
||
|
image = image[None].transpose(0, 3, 1, 2)
|
||
|
image = torch.from_numpy(image)
|
||
|
image = 2.0 * image - 1.0
|
||
|
return image.to(self.device)
|
||
|
|
||
|
def _create_init_mask(self, image):
|
||
|
# convert into a black/white mask
|
||
|
image = self._image_to_mask(image)
|
||
|
image = image.convert('RGB')
|
||
|
# BUG: We need to use the model's downsample factor rather than hardcoding "8"
|
||
|
from ldm.dream.generator.base import downsampling
|
||
|
image = image.resize((image.width//downsampling, image.height//downsampling), resample=Image.Resampling.LANCZOS)
|
||
|
# print(
|
||
|
# f'>> DEBUG: writing the mask to mask.png'
|
||
|
# )
|
||
|
# image.save('mask.png')
|
||
|
image = np.array(image)
|
||
|
image = image.astype(np.float32) / 255.0
|
||
|
image = image[None].transpose(0, 3, 1, 2)
|
||
|
image = torch.from_numpy(image)
|
||
|
return image.to(self.device)
|
||
|
|
||
|
# The mask is expected to have the region to be inpainted
|
||
|
# with alpha transparency. It converts it into a black/white
|
||
|
# image with the transparent part black.
|
||
|
def _image_to_mask(self, mask_image, invert=False) -> Image:
|
||
|
# Obtain the mask from the transparency channel
|
||
|
mask = Image.new(mode="L", size=mask_image.size, color=255)
|
||
|
mask.putdata(mask_image.getdata(band=3))
|
||
|
if invert:
|
||
|
mask = ImageOps.invert(mask)
|
||
|
return mask
|
||
|
|
||
|
def _has_transparency(self,image):
|
||
|
if image.info.get("transparency", None) is not None:
|
||
|
return True
|
||
|
if image.mode == "P":
|
||
|
transparent = image.info.get("transparency", -1)
|
||
|
for _, index in image.getcolors():
|
||
|
if index == transparent:
|
||
|
return True
|
||
|
elif image.mode == "RGBA":
|
||
|
extrema = image.getextrema()
|
||
|
if extrema[3][0] < 255:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _check_for_erasure(self,image):
|
||
|
width, height = image.size
|
||
|
pixdata = image.load()
|
||
|
colored = 0
|
||
|
for y in range(height):
|
||
|
for x in range(width):
|
||
|
if pixdata[x, y][3] == 0:
|
||
|
r, g, b, _ = pixdata[x, y]
|
||
|
if (r, g, b) != (0, 0, 0) and \
|
||
|
(r, g, b) != (255, 255, 255):
|
||
|
colored += 1
|
||
|
return colored == 0
|
||
|
|
||
|
def _squeeze_image(self,image):
|
||
|
x,y,resize_needed = self._resolution_check(image.width,image.height)
|
||
|
if resize_needed:
|
||
|
return InitImageResizer(image).resize(x,y)
|
||
|
return image
|
||
|
|
||
|
|
||
|
def _fit_image(self,image,max_dimensions):
|
||
|
w,h = max_dimensions
|
||
|
print(
|
||
|
f'>> image will be resized to fit inside a box {w}x{h} in size.'
|
||
|
)
|
||
|
if image.width > image.height:
|
||
|
h = None # by setting h to none, we tell InitImageResizer to fit into the width and calculate height
|
||
|
elif image.height > image.width:
|
||
|
w = None # ditto for w
|
||
|
else:
|
||
|
pass
|
||
|
image = InitImageResizer(image).resize(w,h) # note that InitImageResizer does the multiple of 64 truncation internally
|
||
|
print(
|
||
|
f'>> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}'
|
||
|
)
|
||
|
return image
|
||
|
|
||
|
def _resolution_check(self, width, height, log=False):
|
||
|
resize_needed = False
|
||
|
w, h = map(
|
||
|
lambda x: x - x % 64, (width, height)
|
||
|
) # resize to integer multiple of 64
|
||
|
if h != height or w != width:
|
||
|
if log:
|
||
|
print(
|
||
|
f'>> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}'
|
||
|
)
|
||
|
height = h
|
||
|
width = w
|
||
|
resize_needed = True
|
||
|
|
||
|
if (width * height) > (self.width * self.height):
|
||
|
print(">> This input is larger than your defaults. If you run out of memory, please use a smaller image.")
|
||
|
|
||
|
return width, height, resize_needed
|
||
|
|
||
|
|