InvokeAI/invokeai/backend/generator/txt2img2img.py

210 lines
7.8 KiB
Python
Raw Normal View History

2023-03-03 06:02:00 +00:00
"""
2023-02-28 05:37:13 +00:00
invokeai.backend.generator.txt2img inherits from invokeai.backend.generator
2023-03-03 06:02:00 +00:00
"""
2023-02-28 05:37:13 +00:00
import math
from typing import Callable, Optional
import torch
from diffusers.utils.logging import get_verbosity, set_verbosity, set_verbosity_error
2023-03-04 00:23:21 +00:00
from ..stable_diffusion import PostprocessingSettings
2023-03-03 06:02:00 +00:00
from .base import Generator
2023-03-04 01:58:33 +00:00
from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
from ..stable_diffusion.diffusers_pipeline import ConditioningData
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
2023-02-28 05:37:13 +00:00
2023-04-29 13:43:40 +00:00
import invokeai.backend.util.logging as logger
2023-02-28 05:37:13 +00:00
class Txt2Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
2023-03-03 06:02:00 +00:00
self.init_latent = None # for get_noise()
def get_make_image(
self,
prompt: str,
sampler,
steps: int,
cfg_scale: float,
ddim_eta,
conditioning,
width: int,
height: int,
strength: float,
step_callback: Optional[Callable] = None,
threshold=0.0,
warmup=0.2,
perlin=0.0,
h_symmetry_time_pct=None,
v_symmetry_time_pct=None,
attention_maps_callback=None,
**kwargs,
):
2023-02-28 05:37:13 +00:00
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
self.perlin = perlin
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
uc, c, extra_conditioning_info = conditioning
2023-03-03 06:02:00 +00:00
conditioning_data = ConditioningData(
uc,
c,
cfg_scale,
extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=threshold,
warmup=0.2,
h_symmetry_time_pct=h_symmetry_time_pct,
v_symmetry_time_pct=v_symmetry_time_pct,
),
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
2023-02-28 05:37:13 +00:00
2023-03-13 13:11:09 +00:00
def make_image(x_T: torch.Tensor, _: int):
2023-02-28 05:37:13 +00:00
first_pass_latent_output, _ = pipeline.latents_from_embeddings(
latents=torch.zeros_like(x_T),
num_inference_steps=steps,
conditioning_data=conditioning_data,
noise=x_T,
callback=step_callback,
)
# Get our initial generation width and height directly from the latent output so
# the message below is accurate.
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
2023-04-29 13:43:40 +00:00
logger.info(
f"Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
2023-03-03 06:02:00 +00:00
)
2023-02-28 05:37:13 +00:00
# resizing
resized_latents = torch.nn.functional.interpolate(
first_pass_latent_output,
2023-03-03 06:02:00 +00:00
size=(
height // self.downsampling_factor,
width // self.downsampling_factor,
),
mode="bilinear",
2023-02-28 05:37:13 +00:00
)
# Free up memory from the last generation.
2023-03-03 06:02:00 +00:00
clear_cuda_cache = kwargs["clear_cuda_cache"] or None
2023-02-28 05:37:13 +00:00
if clear_cuda_cache is not None:
clear_cuda_cache()
2023-03-03 06:02:00 +00:00
second_pass_noise = self.get_noise_like(
resized_latents, override_perlin=True
)
2023-02-28 05:37:13 +00:00
# Clear symmetry for the second pass
from dataclasses import replace
2023-03-03 06:02:00 +00:00
new_postprocessing_settings = replace(
conditioning_data.postprocessing_settings, h_symmetry_time_pct=None
)
new_postprocessing_settings = replace(
new_postprocessing_settings, v_symmetry_time_pct=None
)
new_conditioning_data = replace(
conditioning_data, postprocessing_settings=new_postprocessing_settings
)
2023-02-28 05:37:13 +00:00
verbosity = get_verbosity()
set_verbosity_error()
pipeline_output = pipeline.img2img_from_latents_and_embeddings(
resized_latents,
num_inference_steps=steps,
conditioning_data=new_conditioning_data,
strength=strength,
noise=second_pass_noise,
2023-03-03 06:02:00 +00:00
callback=step_callback,
)
2023-02-28 05:37:13 +00:00
set_verbosity(verbosity)
2023-03-03 06:02:00 +00:00
if (
pipeline_output.attention_map_saver is not None
and attention_maps_callback is not None
):
2023-02-28 05:37:13 +00:00
attention_maps_callback(pipeline_output.attention_map_saver)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
# FIXME: do we really need something entirely different for the inpainting model?
# in the case of the inpainting model being loaded, the trick of
# providing an interpolated latent doesn't work, so we transiently
# create a 512x512 PIL image, upscale it, and run the inpainting
# over it in img2img mode. Because the inpaing model is so conservative
# it doesn't change the image (much)
return make_image
2023-03-03 06:02:00 +00:00
def get_noise_like(self, like: torch.Tensor, override_perlin: bool = False):
2023-02-28 05:37:13 +00:00
device = like.device
2023-03-03 06:02:00 +00:00
if device.type == "mps":
x = torch.randn_like(like, device="cpu", dtype=self.torch_dtype()).to(
device
)
2023-02-28 05:37:13 +00:00
else:
x = torch.randn_like(like, device=device, dtype=self.torch_dtype())
if self.perlin > 0.0 and override_perlin == False:
shape = like.shape
2023-03-03 06:02:00 +00:00
x = (1 - self.perlin) * x + self.perlin * self.get_perlin_noise(
shape[3], shape[2]
)
2023-02-28 05:37:13 +00:00
return x
# returns a tensor filled with random numbers from a normal distribution
2023-03-03 06:02:00 +00:00
def get_noise(self, width, height, scale=True):
2023-02-28 05:37:13 +00:00
# print(f"Get noise: {width}x{height}")
if scale:
# Scale the input width and height for the initial generation
# Make their area equivalent to the model's resolution area (e.g. 512*512 = 262144),
# while keeping the minimum dimension at least 0.5 * resolution (e.g. 512*0.5 = 256)
aspect = width / height
dimension = self.model.unet.config.sample_size * self.model.vae_scale_factor
min_dimension = math.floor(dimension * 0.5)
2023-03-03 06:02:00 +00:00
model_area = (
dimension * dimension
) # hardcoded for now since all models are trained on square images
2023-02-28 05:37:13 +00:00
if aspect > 1.0:
init_height = max(min_dimension, math.sqrt(model_area / aspect))
init_width = init_height * aspect
else:
init_width = max(min_dimension, math.sqrt(model_area * aspect))
init_height = init_width / aspect
2023-03-03 06:02:00 +00:00
scaled_width, scaled_height = trim_to_multiple_of(
math.floor(init_width), math.floor(init_height)
)
2023-02-28 05:37:13 +00:00
else:
scaled_width = width
scaled_height = height
device = self.model.device
channels = self.latent_channels
if channels == 9:
channels = 4 # we don't really want noise for all the mask channels
2023-03-03 06:02:00 +00:00
shape = (
1,
channels,
scaled_height // self.downsampling_factor,
scaled_width // self.downsampling_factor,
)
if self.use_mps_noise or device.type == "mps":
tensor = torch.empty(size=shape, device="cpu")
2023-02-28 05:37:13 +00:00
tensor = self.get_noise_like(like=tensor).to(device)
else:
tensor = torch.empty(size=shape, device=device)
tensor = self.get_noise_like(like=tensor)
return tensor