mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
83 lines
2.5 KiB
Python
83 lines
2.5 KiB
Python
|
import os
|
||
|
from enum import Enum
|
||
|
from typing import Literal, Optional
|
||
|
|
||
|
import torch
|
||
|
from transformers import CLIPVisionModelWithProjection
|
||
|
|
||
|
from invokeai.backend.model_management.models.base import (
|
||
|
BaseModelType,
|
||
|
InvalidModelException,
|
||
|
ModelBase,
|
||
|
ModelConfigBase,
|
||
|
ModelType,
|
||
|
SubModelType,
|
||
|
calc_model_size_by_data,
|
||
|
calc_model_size_by_fs,
|
||
|
classproperty,
|
||
|
)
|
||
|
|
||
|
|
||
|
class CLIPVisionModelFormat(str, Enum):
|
||
|
Diffusers = "diffusers"
|
||
|
|
||
|
|
||
|
class CLIPVisionModel(ModelBase):
|
||
|
class DiffusersConfig(ModelConfigBase):
|
||
|
model_format: Literal[CLIPVisionModelFormat.Diffusers]
|
||
|
|
||
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||
|
assert model_type == ModelType.CLIPVision
|
||
|
super().__init__(model_path, base_model, model_type)
|
||
|
|
||
|
self.model_size = calc_model_size_by_fs(self.model_path)
|
||
|
|
||
|
@classmethod
|
||
|
def detect_format(cls, path: str) -> str:
|
||
|
if not os.path.exists(path):
|
||
|
raise ModuleNotFoundError(f"No CLIP Vision model at path '{path}'.")
|
||
|
|
||
|
if os.path.isdir(path) and os.path.exists(os.path.join(path, "config.json")):
|
||
|
return CLIPVisionModelFormat.Diffusers
|
||
|
|
||
|
raise InvalidModelException(f"Unexpected CLIP Vision model format: {path}")
|
||
|
|
||
|
@classproperty
|
||
|
def save_to_config(cls) -> bool:
|
||
|
return True
|
||
|
|
||
|
def get_size(self, child_type: Optional[SubModelType] = None) -> int:
|
||
|
if child_type is not None:
|
||
|
raise ValueError("There are no child models in a CLIP Vision model.")
|
||
|
|
||
|
return self.model_size
|
||
|
|
||
|
def get_model(
|
||
|
self,
|
||
|
torch_dtype: Optional[torch.dtype],
|
||
|
child_type: Optional[SubModelType] = None,
|
||
|
) -> CLIPVisionModelWithProjection:
|
||
|
if child_type is not None:
|
||
|
raise ValueError("There are no child models in a CLIP Vision model.")
|
||
|
|
||
|
model = CLIPVisionModelWithProjection.from_pretrained(self._image_encoder_path, torch_dtype=torch_dtype)
|
||
|
|
||
|
# Calculate a more accurate model size.
|
||
|
self.model_size = calc_model_size_by_data(model)
|
||
|
|
||
|
return model
|
||
|
|
||
|
@classmethod
|
||
|
def convert_if_required(
|
||
|
cls,
|
||
|
model_path: str,
|
||
|
output_path: str,
|
||
|
config: ModelConfigBase,
|
||
|
base_model: BaseModelType,
|
||
|
) -> str:
|
||
|
format = cls.detect_format(model_path)
|
||
|
if format == CLIPVisionModelFormat.Diffusers:
|
||
|
return model_path
|
||
|
else:
|
||
|
raise ValueError(f"Unsupported format: '{format}'.")
|