2023-04-06 04:06:05 +00:00
|
|
|
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
|
|
|
|
from typing import Literal, Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from torch import Tensor
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from ...backend.model_management.model_manager import ModelManager
|
2023-04-06 08:35:18 +00:00
|
|
|
from ...backend.util.devices import choose_torch_device, torch_dtype
|
2023-04-06 04:06:05 +00:00
|
|
|
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
|
|
|
from ...backend.image_util.seamless import configure_model_padding
|
|
|
|
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
|
|
|
|
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
|
|
|
|
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
|
|
|
|
import numpy as np
|
|
|
|
from accelerate.utils import set_seed
|
|
|
|
from ..services.image_storage import ImageType
|
|
|
|
from .baseinvocation import BaseInvocation, InvocationContext
|
|
|
|
from .image import ImageField, ImageOutput
|
|
|
|
from ...backend.generator import Generator
|
|
|
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
|
|
|
from ...backend.util.util import image_to_dataURL
|
|
|
|
from diffusers.schedulers import SchedulerMixin as Scheduler
|
|
|
|
import diffusers
|
|
|
|
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
class LatentsField(BaseModel):
|
|
|
|
"""A latents field used for passing latents between invocations"""
|
|
|
|
|
|
|
|
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
|
|
|
|
|
|
|
|
|
|
|
|
class LatentsOutput(BaseInvocationOutput):
|
|
|
|
"""Base class for invocations that output latents"""
|
|
|
|
#fmt: off
|
|
|
|
type: Literal["latent_output"] = "latent_output"
|
|
|
|
latents: LatentsField = Field(default=None, description="The output latents")
|
|
|
|
#fmt: on
|
|
|
|
|
|
|
|
class NoiseOutput(BaseInvocationOutput):
|
|
|
|
"""Invocation noise output"""
|
|
|
|
#fmt: off
|
|
|
|
type: Literal["noise_output"] = "noise_output"
|
|
|
|
noise: LatentsField = Field(default=None, description="The output noise")
|
|
|
|
#fmt: on
|
|
|
|
|
|
|
|
|
|
|
|
# TODO: this seems like a hack
|
|
|
|
scheduler_map = dict(
|
|
|
|
ddim=diffusers.DDIMScheduler,
|
|
|
|
dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
|
|
|
k_dpm_2=diffusers.KDPM2DiscreteScheduler,
|
|
|
|
k_dpm_2_a=diffusers.KDPM2AncestralDiscreteScheduler,
|
|
|
|
k_dpmpp_2=diffusers.DPMSolverMultistepScheduler,
|
|
|
|
k_euler=diffusers.EulerDiscreteScheduler,
|
|
|
|
k_euler_a=diffusers.EulerAncestralDiscreteScheduler,
|
|
|
|
k_heun=diffusers.HeunDiscreteScheduler,
|
|
|
|
k_lms=diffusers.LMSDiscreteScheduler,
|
|
|
|
plms=diffusers.PNDMScheduler,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
SAMPLER_NAME_VALUES = Literal[
|
|
|
|
tuple(list(scheduler_map.keys()))
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
def get_scheduler(scheduler_name:str, model: StableDiffusionGeneratorPipeline)->Scheduler:
|
|
|
|
scheduler_class = scheduler_map.get(scheduler_name,'ddim')
|
|
|
|
scheduler = scheduler_class.from_config(model.scheduler.config)
|
|
|
|
# hack copied over from generate.py
|
|
|
|
if not hasattr(scheduler, 'uses_inpainting_model'):
|
|
|
|
scheduler.uses_inpainting_model = lambda: False
|
|
|
|
return scheduler
|
|
|
|
|
|
|
|
|
|
|
|
def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_channels:int=4, use_mps_noise:bool=False, downsampling_factor:int = 8):
|
|
|
|
# limit noise to only the diffusion image channels, not the mask channels
|
|
|
|
input_channels = min(latent_channels, 4)
|
|
|
|
use_device = "cpu" if (use_mps_noise or device.type == "mps") else device
|
|
|
|
generator = torch.Generator(device=use_device).manual_seed(seed)
|
|
|
|
x = torch.randn(
|
|
|
|
[
|
|
|
|
1,
|
|
|
|
input_channels,
|
|
|
|
height // downsampling_factor,
|
|
|
|
width // downsampling_factor,
|
|
|
|
],
|
|
|
|
dtype=torch_dtype(device),
|
|
|
|
device=use_device,
|
|
|
|
generator=generator,
|
|
|
|
).to(device)
|
|
|
|
# if self.perlin > 0.0:
|
|
|
|
# perlin_noise = self.get_perlin_noise(
|
|
|
|
# width // self.downsampling_factor, height // self.downsampling_factor
|
|
|
|
# )
|
|
|
|
# x = (1 - self.perlin) * x + self.perlin * perlin_noise
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class NoiseInvocation(BaseInvocation):
|
|
|
|
"""Generates latent noise."""
|
|
|
|
|
|
|
|
type: Literal["noise"] = "noise"
|
|
|
|
|
|
|
|
# Inputs
|
|
|
|
seed: int = Field(default=0, ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", )
|
|
|
|
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", )
|
|
|
|
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", )
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> NoiseOutput:
|
2023-04-06 08:35:18 +00:00
|
|
|
device = torch.device(choose_torch_device())
|
2023-04-06 04:06:05 +00:00
|
|
|
noise = get_noise(self.width, self.height, device, self.seed)
|
|
|
|
|
|
|
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
|
|
|
context.services.latents.set(name, noise)
|
|
|
|
return NoiseOutput(
|
|
|
|
noise=LatentsField(latents_name=name)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Text to image
|
|
|
|
class TextToLatentsInvocation(BaseInvocation):
|
|
|
|
"""Generates latents from a prompt."""
|
|
|
|
|
|
|
|
type: Literal["t2l"] = "t2l"
|
|
|
|
|
|
|
|
# Inputs
|
|
|
|
# TODO: consider making prompt optional to enable providing prompt through a link
|
|
|
|
# fmt: off
|
|
|
|
prompt: Optional[str] = Field(description="The prompt to generate an image from")
|
|
|
|
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
|
|
|
|
noise: Optional[LatentsField] = Field(description="The noise to use")
|
|
|
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
|
|
|
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
|
|
|
|
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
|
|
|
|
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
2023-04-10 08:13:23 +00:00
|
|
|
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
|
2023-04-06 04:06:05 +00:00
|
|
|
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
|
|
|
seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
|
|
|
model: str = Field(default="", description="The model to use (currently ignored)")
|
|
|
|
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
|
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
# TODO: pass this an emitter method or something? or a session for dispatching?
|
|
|
|
def dispatch_progress(
|
|
|
|
self, context: InvocationContext, sample: Tensor, step: int
|
|
|
|
) -> None:
|
|
|
|
# TODO: only output a preview image when requested
|
|
|
|
image = Generator.sample_to_lowres_estimated_image(sample)
|
|
|
|
|
|
|
|
(width, height) = image.size
|
|
|
|
width *= 8
|
|
|
|
height *= 8
|
|
|
|
|
|
|
|
dataURL = image_to_dataURL(image, image_format="JPEG")
|
|
|
|
|
|
|
|
context.services.events.emit_generator_progress(
|
|
|
|
context.graph_execution_state_id,
|
|
|
|
self.id,
|
|
|
|
{
|
|
|
|
"width": width,
|
|
|
|
"height": height,
|
|
|
|
"dataURL": dataURL
|
|
|
|
},
|
|
|
|
step,
|
|
|
|
self.steps,
|
|
|
|
)
|
|
|
|
|
|
|
|
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
|
|
|
|
model_info = model_manager.get_model(self.model)
|
|
|
|
model_name = model_info['model_name']
|
|
|
|
model_hash = model_info['hash']
|
|
|
|
model: StableDiffusionGeneratorPipeline = model_info['model']
|
|
|
|
model.scheduler = get_scheduler(
|
|
|
|
model=model,
|
2023-04-10 08:13:23 +00:00
|
|
|
scheduler_name=self.scheduler
|
2023-04-06 04:06:05 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
if isinstance(model, DiffusionPipeline):
|
|
|
|
for component in [model.unet, model.vae]:
|
|
|
|
configure_model_padding(component,
|
|
|
|
self.seamless,
|
|
|
|
self.seamless_axes
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
configure_model_padding(model,
|
|
|
|
self.seamless,
|
|
|
|
self.seamless_axes
|
|
|
|
)
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
|
|
|
|
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model)
|
|
|
|
conditioning_data = ConditioningData(
|
|
|
|
uc,
|
|
|
|
c,
|
|
|
|
self.cfg_scale,
|
|
|
|
extra_conditioning_info,
|
|
|
|
postprocessing_settings=PostprocessingSettings(
|
|
|
|
threshold=0.0,#threshold,
|
|
|
|
warmup=0.2,#warmup,
|
|
|
|
h_symmetry_time_pct=None,#h_symmetry_time_pct,
|
|
|
|
v_symmetry_time_pct=None#v_symmetry_time_pct,
|
|
|
|
),
|
|
|
|
).add_scheduler_args_if_applicable(model.scheduler, eta=None)#ddim_eta)
|
|
|
|
return conditioning_data
|
|
|
|
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
|
|
noise = context.services.latents.get(self.noise.latents_name)
|
|
|
|
|
|
|
|
def step_callback(state: PipelineIntermediateState):
|
|
|
|
self.dispatch_progress(context, state.latents, state.step)
|
|
|
|
|
|
|
|
model = self.get_model(context.services.model_manager)
|
|
|
|
conditioning_data = self.get_conditioning_data(model)
|
|
|
|
|
|
|
|
# TODO: Verify the noise is the right size
|
|
|
|
|
|
|
|
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
|
|
|
latents=torch.zeros_like(noise, dtype=torch_dtype(model.device)),
|
|
|
|
noise=noise,
|
|
|
|
num_inference_steps=self.steps,
|
|
|
|
conditioning_data=conditioning_data,
|
|
|
|
callback=step_callback
|
|
|
|
)
|
|
|
|
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
|
|
|
context.services.latents.set(name, result_latents)
|
|
|
|
return LatentsOutput(
|
|
|
|
latents=LatentsField(latents_name=name)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class LatentsToLatentsInvocation(TextToLatentsInvocation):
|
|
|
|
"""Generates latents using latents as base image."""
|
|
|
|
|
|
|
|
type: Literal["l2l"] = "l2l"
|
|
|
|
|
|
|
|
# Inputs
|
|
|
|
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
|
|
|
|
strength: float = Field(default=0.5, description="The strength of the latents to use")
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
|
|
|
noise = context.services.latents.get(self.noise.latents_name)
|
|
|
|
latent = context.services.latents.get(self.latents.latents_name)
|
|
|
|
|
|
|
|
def step_callback(state: PipelineIntermediateState):
|
|
|
|
self.dispatch_progress(context, state.latents, state.step)
|
|
|
|
|
|
|
|
model = self.get_model(context.services.model_manager)
|
|
|
|
conditioning_data = self.get_conditioning_data(model)
|
|
|
|
|
|
|
|
# TODO: Verify the noise is the right size
|
|
|
|
|
|
|
|
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
|
|
|
|
latent, device=model.device, dtype=latent.dtype
|
|
|
|
)
|
|
|
|
|
|
|
|
timesteps, _ = model.get_img2img_timesteps(
|
|
|
|
self.steps,
|
|
|
|
self.strength,
|
|
|
|
device=model.device,
|
|
|
|
)
|
|
|
|
|
|
|
|
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
|
|
|
latents=initial_latents,
|
|
|
|
timesteps=timesteps,
|
|
|
|
noise=noise,
|
|
|
|
num_inference_steps=self.steps,
|
|
|
|
conditioning_data=conditioning_data,
|
|
|
|
callback=step_callback
|
|
|
|
)
|
|
|
|
|
|
|
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
|
|
|
context.services.latents.set(name, result_latents)
|
|
|
|
return LatentsOutput(
|
|
|
|
latents=LatentsField(latents_name=name)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Latent to image
|
|
|
|
class LatentsToImageInvocation(BaseInvocation):
|
|
|
|
"""Generates an image from latents."""
|
|
|
|
|
|
|
|
type: Literal["l2i"] = "l2i"
|
|
|
|
|
|
|
|
# Inputs
|
|
|
|
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
|
|
|
|
model: str = Field(default="", description="The model to use")
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
|
|
latents = context.services.latents.get(self.latents.latents_name)
|
|
|
|
|
|
|
|
# TODO: this only really needs the vae
|
|
|
|
model_info = context.services.model_manager.get_model(self.model)
|
|
|
|
model: StableDiffusionGeneratorPipeline = model_info['model']
|
|
|
|
|
|
|
|
with torch.inference_mode():
|
|
|
|
np_image = model.decode_latents(latents)
|
|
|
|
image = model.numpy_to_pil(np_image)[0]
|
|
|
|
|
|
|
|
image_type = ImageType.RESULT
|
|
|
|
image_name = context.services.images.create_name(
|
|
|
|
context.graph_execution_state_id, self.id
|
|
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, image)
|
|
|
|
return ImageOutput(
|
|
|
|
image=ImageField(image_type=image_type, image_name=image_name)
|
|
|
|
)
|