InvokeAI/backend/server.py

398 lines
11 KiB
Python
Raw Normal View History

import mimetypes
import transformers
import json
import os
import traceback
import eventlet
import glob
import shlex
import argparse
from flask_socketio import SocketIO
from flask import Flask, send_from_directory, url_for, jsonify
from pathlib import Path
from PIL import Image
from pytorch_lightning import logging
from threading import Event
from uuid import uuid4
from ldm.gfpgan.gfpgan_tools import real_esrgan_upscale
from ldm.gfpgan.gfpgan_tools import run_gfpgan
from ldm.generate import Generate
from ldm.dream.pngwriter import PngWriter, retrieve_metadata
from modules.parameters import parameters_to_command, create_cmd_parser
"""
USER CONFIG
"""
output_dir = "outputs/" # Base output directory for images
#host = 'localhost' # Web & socket.io host
host = '0.0.0.0' # Web & socket.io host
port = 9090 # Web & socket.io port
verbose = False # enables copious socket.io logging
additional_allowed_origins = ['http://localhost:9090'] # additional CORS allowed origins
"""
END USER CONFIG
"""
"""
SERVER SETUP
"""
# fix missing mimetypes on windows due to registry wonkiness
mimetypes.add_type('application/javascript', '.js')
mimetypes.add_type('text/css', '.css')
app = Flask(__name__, static_url_path='', static_folder='../frontend/dist/')
app.config['OUTPUTS_FOLDER'] = "../outputs"
@app.route('/outputs/<path:filename>')
def outputs(filename):
return send_from_directory(
app.config['OUTPUTS_FOLDER'],
filename
)
@app.route("/", defaults={'path': ''})
def serve(path):
return send_from_directory(app.static_folder, 'index.html')
logger = True if verbose else False
engineio_logger = True if verbose else False
# default 1,000,000, needs to be higher for socketio to accept larger images
max_http_buffer_size = 10000000
cors_allowed_origins = [f"http://{host}:{port}"] + additional_allowed_origins
socketio = SocketIO(
app,
logger=logger,
engineio_logger=engineio_logger,
max_http_buffer_size=max_http_buffer_size,
cors_allowed_origins=cors_allowed_origins,
)
"""
END SERVER SETUP
"""
"""
APP SETUP
"""
class CanceledException(Exception):
pass
canceled = Event()
# reduce logging outputs to error
transformers.logging.set_verbosity_error()
logging.getLogger('pytorch_lightning').setLevel(logging.ERROR)
# Initialize and load model
model = Generate()
model.load_model()
# location for "finished" images
result_path = os.path.join(output_dir, 'img-samples/')
# temporary path for intermediates
intermediate_path = os.path.join(result_path, 'intermediates/')
# path for user-uploaded init images and masks
init_path = os.path.join(result_path, 'init-images/')
mask_path = os.path.join(result_path, 'mask-images/')
# txt log
log_path = os.path.join(result_path, 'dream_log.txt')
# make all output paths
[os.makedirs(path, exist_ok=True)
for path in [result_path, intermediate_path, init_path, mask_path]]
"""
END APP SETUP
"""
"""
SOCKET.IO LISTENERS
"""
@socketio.on('requestAllImages')
def handle_request_all_images():
print(f'>> All images requested')
parser = create_cmd_parser()
paths = list(filter(os.path.isfile, glob.glob(result_path + "*.png")))
paths.sort(key=lambda x: os.path.getmtime(x))
image_array = []
for path in paths:
# image = Image.open(path)
all_metadata = retrieve_metadata(path)
if 'Dream' in all_metadata and not all_metadata['sd-metadata']:
metadata = vars(parser.parse_args(shlex.split(all_metadata['Dream'])))
else:
metadata = all_metadata['sd-metadata']
image_array.append({'path': path, 'metadata': metadata})
return make_response("OK", data=image_array)
@socketio.on('generateImage')
def handle_generate_image_event(generation_parameters, esrgan_parameters, gfpgan_parameters):
print(f'>> Image generation requested: {generation_parameters}\nESRGAN parameters: {esrgan_parameters}\nGFPGAN parameters: {gfpgan_parameters}')
generate_images(
generation_parameters,
esrgan_parameters,
gfpgan_parameters
)
return make_response("OK")
@socketio.on('runESRGAN')
def handle_run_esrgan_event(original_image, esrgan_parameters):
print(f'>> ESRGAN upscale requested for "{original_image["url"]}": {esrgan_parameters}')
image = Image.open(original_image["url"])
seed = original_image['metadata']['seed'] if 'seed' in original_image['metadata'] else 'unknown_seed'
image = real_esrgan_upscale(
image=image,
upsampler_scale=esrgan_parameters['upscale'][0],
strength=esrgan_parameters['upscale'][1],
seed=seed
)
esrgan_parameters['seed'] = seed
path = save_image(image, esrgan_parameters, result_path, postprocessing='esrgan')
command = parameters_to_command(esrgan_parameters)
write_log_message(f'[Upscaled] "{original_image["url"]}" > "{path}": {command}')
socketio.emit(
'result', {'url': os.path.relpath(path), 'type': 'esrgan', 'uuid': original_image['uuid'],'metadata': esrgan_parameters})
@socketio.on('runGFPGAN')
def handle_run_gfpgan_event(original_image, gfpgan_parameters):
print(f'>> GFPGAN face fix requested for "{original_image["url"]}": {gfpgan_parameters}')
image = Image.open(original_image["url"])
seed = original_image['metadata']['seed'] if 'seed' in original_image['metadata'] else 'unknown_seed'
image = run_gfpgan(
image=image,
strength=gfpgan_parameters['gfpgan_strength'],
seed=seed,
upsampler_scale=1
)
gfpgan_parameters['seed'] = seed
path = save_image(image, gfpgan_parameters, result_path, postprocessing='gfpgan')
command = parameters_to_command(gfpgan_parameters)
write_log_message(f'[Fixed faces] "{original_image["url"]}" > "{path}": {command}')
socketio.emit(
'result', {'url': os.path.relpath(path), 'type': 'gfpgan', 'uuid': original_image['uuid'],'metadata': gfpgan_parameters})
@socketio.on('cancel')
def handle_cancel():
print(f'>> Cancel processing requested')
canceled.set()
return make_response("OK")
# TODO: I think this needs a safety mechanism.
@socketio.on('deleteImage')
def handle_delete_image(path):
print(f'>> Delete requested "{path}"')
Path(path).unlink()
return make_response("OK")
# TODO: I think this needs a safety mechanism.
@socketio.on('uploadInitialImage')
def handle_upload_initial_image(bytes, name):
print(f'>> Init image upload requested "{name}"')
uuid = uuid4().hex
split = os.path.splitext(name)
name = f'{split[0]}.{uuid}{split[1]}'
file_path = os.path.join(init_path, name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
newFile = open(file_path, "wb")
newFile.write(bytes)
return make_response("OK", data=file_path)
# TODO: I think this needs a safety mechanism.
@socketio.on('uploadMaskImage')
def handle_upload_mask_image(bytes, name):
print(f'>> Mask image upload requested "{name}"')
uuid = uuid4().hex
split = os.path.splitext(name)
name = f'{split[0]}.{uuid}{split[1]}'
file_path = os.path.join(mask_path, name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
newFile = open(file_path, "wb")
newFile.write(bytes)
return make_response("OK", data=file_path)
"""
END SOCKET.IO LISTENERS
"""
"""
ADDITIONAL FUNCTIONS
"""
def write_log_message(message, log_path=log_path):
"""Logs the filename and parameters used to generate or process that image to log file"""
message = f'{message}\n'
with open(log_path, 'a', encoding='utf-8') as file:
file.writelines(message)
def make_response(status, message=None, data=None):
response = {'status': status}
if message is not None:
response['message'] = message
if data is not None:
response['data'] = data
return response
def save_image(image, parameters, output_dir, step_index=None, postprocessing=False):
seed = parameters['seed'] if 'seed' in parameters else 'unknown_seed'
pngwriter = PngWriter(output_dir)
prefix = pngwriter.unique_prefix()
filename = f'{prefix}.{seed}'
if step_index:
filename += f'.{step_index}'
if postprocessing:
filename += f'.postprocessed'
filename += '.png'
command = parameters_to_command(parameters)
path = pngwriter.save_image_and_prompt_to_png(image, command, metadata=parameters, name=filename)
return path
def generate_images(generation_parameters, esrgan_parameters, gfpgan_parameters):
canceled.clear()
step_index = 1
def image_progress(sample, step):
if canceled.is_set():
raise CanceledException
nonlocal step_index
nonlocal generation_parameters
if generation_parameters["progress_images"] and step % 5 == 0 and step < generation_parameters['steps'] - 1:
image = model.sample_to_image(sample)
path = save_image(image, generation_parameters, intermediate_path, step_index)
step_index += 1
socketio.emit('intermediateResult', {
'url': os.path.relpath(path), 'metadata': generation_parameters})
socketio.emit('progress', {'step': step + 1})
eventlet.sleep(0)
def image_done(image, seed):
nonlocal generation_parameters
nonlocal esrgan_parameters
nonlocal gfpgan_parameters
all_parameters = generation_parameters
postprocessing = False
if esrgan_parameters:
image = real_esrgan_upscale(
image=image,
strength=esrgan_parameters['strength'],
upsampler_scale=esrgan_parameters['level'],
seed=seed
)
postprocessing = True
all_parameters["upscale"] = [esrgan_parameters['level'], esrgan_parameters['strength']]
if gfpgan_parameters:
image = run_gfpgan(
image=image,
strength=gfpgan_parameters['strength'],
seed=seed,
upsampler_scale=1,
)
postprocessing = True
all_parameters["gfpgan_strength"] = gfpgan_parameters['strength']
all_parameters['seed'] = seed
path = save_image(image, all_parameters, result_path, postprocessing=postprocessing)
command = parameters_to_command(all_parameters)
print(f'Image generated: "{path}"')
write_log_message(f'[Generated] "{path}": {command}')
socketio.emit(
'result', {'url': os.path.relpath(path), 'type': 'generation', 'metadata': all_parameters})
eventlet.sleep(0)
try:
model.prompt2image(
**generation_parameters,
step_callback=image_progress,
image_callback=image_done
)
except KeyboardInterrupt:
raise
except CanceledException:
pass
except Exception as e:
socketio.emit('error', (str(e)))
print("\n")
traceback.print_exc()
print("\n")
"""
END ADDITIONAL FUNCTIONS
"""
if __name__ == '__main__':
print(f'Starting server at http://{host}:{port}')
socketio.run(app, host=host, port=port)