2022-10-17 23:31:20 +00:00
|
|
|
import torch.nn as nn
|
2022-12-19 16:36:39 +00:00
|
|
|
|
2022-10-17 23:31:20 +00:00
|
|
|
def _conv_forward_asymmetric(self, input, weight, bias):
|
|
|
|
"""
|
|
|
|
Patch for Conv2d._conv_forward that supports asymmetric padding
|
|
|
|
"""
|
|
|
|
working = nn.functional.pad(input, self.asymmetric_padding['x'], mode=self.asymmetric_padding_mode['x'])
|
|
|
|
working = nn.functional.pad(working, self.asymmetric_padding['y'], mode=self.asymmetric_padding_mode['y'])
|
|
|
|
return nn.functional.conv2d(working, weight, bias, self.stride, nn.modules.utils._pair(0), self.dilation, self.groups)
|
|
|
|
|
|
|
|
def configure_model_padding(model, seamless, seamless_axes):
|
|
|
|
"""
|
|
|
|
Modifies the 2D convolution layers to use a circular padding mode based on the `seamless` and `seamless_axes` options.
|
|
|
|
"""
|
|
|
|
for m in model.modules():
|
|
|
|
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
|
|
|
if seamless:
|
|
|
|
m.asymmetric_padding_mode = {}
|
|
|
|
m.asymmetric_padding = {}
|
|
|
|
m.asymmetric_padding_mode['x'] = 'circular' if ('x' in seamless_axes) else 'constant'
|
|
|
|
m.asymmetric_padding['x'] = (m._reversed_padding_repeated_twice[0], m._reversed_padding_repeated_twice[1], 0, 0)
|
|
|
|
m.asymmetric_padding_mode['y'] = 'circular' if ('y' in seamless_axes) else 'constant'
|
|
|
|
m.asymmetric_padding['y'] = (0, 0, m._reversed_padding_repeated_twice[2], m._reversed_padding_repeated_twice[3])
|
|
|
|
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
|
|
|
|
else:
|
|
|
|
m._conv_forward = nn.Conv2d._conv_forward.__get__(m, nn.Conv2d)
|
|
|
|
if hasattr(m, 'asymmetric_padding_mode'):
|
|
|
|
del m.asymmetric_padding_mode
|
|
|
|
if hasattr(m, 'asymmetric_padding'):
|
2022-12-19 16:36:39 +00:00
|
|
|
del m.asymmetric_padding
|