2023-07-12 15:14:22 +00:00
|
|
|
from typing import Literal, Optional, Union
|
|
|
|
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
|
|
from invokeai.app.invocations.baseinvocation import (BaseInvocation,
|
2023-07-18 14:26:45 +00:00
|
|
|
BaseInvocationOutput, InvocationConfig,
|
2023-07-12 15:14:22 +00:00
|
|
|
InvocationContext)
|
|
|
|
from invokeai.app.invocations.controlnet_image_processors import ControlField
|
|
|
|
from invokeai.app.invocations.model import (LoRAModelField, MainModelField,
|
|
|
|
VAEModelField)
|
|
|
|
|
|
|
|
class LoRAMetadataField(BaseModel):
|
|
|
|
"""LoRA metadata for an image generated in InvokeAI."""
|
|
|
|
lora: LoRAModelField = Field(description="The LoRA model")
|
|
|
|
weight: float = Field(description="The weight of the LoRA model")
|
|
|
|
|
|
|
|
|
|
|
|
class CoreMetadata(BaseModel):
|
|
|
|
"""Core generation metadata for an image generated in InvokeAI."""
|
|
|
|
|
|
|
|
generation_mode: str = Field(description="The generation mode that output this image",)
|
|
|
|
positive_prompt: str = Field(description="The positive prompt parameter")
|
|
|
|
negative_prompt: str = Field(description="The negative prompt parameter")
|
|
|
|
width: int = Field(description="The width parameter")
|
|
|
|
height: int = Field(description="The height parameter")
|
|
|
|
seed: int = Field(description="The seed used for noise generation")
|
|
|
|
rand_device: str = Field(description="The device used for random number generation")
|
|
|
|
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
|
|
|
steps: int = Field(description="The number of steps used for inference")
|
|
|
|
scheduler: str = Field(description="The scheduler used for inference")
|
|
|
|
clip_skip: int = Field(description="The number of skipped CLIP layers",)
|
|
|
|
model: MainModelField = Field(description="The main model used for inference")
|
|
|
|
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
|
|
|
|
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
|
|
|
strength: Union[float, None] = Field(
|
|
|
|
default=None,
|
|
|
|
description="The strength used for latents-to-latents",
|
|
|
|
)
|
|
|
|
init_image: Union[str, None] = Field(
|
|
|
|
default=None, description="The name of the initial image"
|
|
|
|
)
|
|
|
|
vae: Union[VAEModelField, None] = Field(
|
|
|
|
default=None,
|
|
|
|
description="The VAE used for decoding, if the main model's default was not used",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class ImageMetadata(BaseModel):
|
|
|
|
"""An image's generation metadata"""
|
|
|
|
|
|
|
|
metadata: Optional[dict] = Field(
|
|
|
|
default=None,
|
|
|
|
description="The image's core metadata, if it was created in the Linear or Canvas UI",
|
|
|
|
)
|
|
|
|
graph: Optional[dict] = Field(
|
|
|
|
default=None, description="The graph that created the image"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class MetadataAccumulatorOutput(BaseInvocationOutput):
|
|
|
|
"""The output of the MetadataAccumulator node"""
|
|
|
|
|
|
|
|
type: Literal["metadata_accumulator_output"] = "metadata_accumulator_output"
|
|
|
|
|
|
|
|
metadata: CoreMetadata = Field(description="The core metadata for the image")
|
|
|
|
|
|
|
|
|
|
|
|
class MetadataAccumulatorInvocation(BaseInvocation):
|
|
|
|
"""Outputs a Core Metadata Object"""
|
|
|
|
|
|
|
|
type: Literal["metadata_accumulator"] = "metadata_accumulator"
|
|
|
|
|
|
|
|
generation_mode: str = Field(description="The generation mode that output this image",)
|
|
|
|
positive_prompt: str = Field(description="The positive prompt parameter")
|
|
|
|
negative_prompt: str = Field(description="The negative prompt parameter")
|
|
|
|
width: int = Field(description="The width parameter")
|
|
|
|
height: int = Field(description="The height parameter")
|
|
|
|
seed: int = Field(description="The seed used for noise generation")
|
|
|
|
rand_device: str = Field(description="The device used for random number generation")
|
|
|
|
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
|
|
|
|
steps: int = Field(description="The number of steps used for inference")
|
|
|
|
scheduler: str = Field(description="The scheduler used for inference")
|
|
|
|
clip_skip: int = Field(description="The number of skipped CLIP layers",)
|
|
|
|
model: MainModelField = Field(description="The main model used for inference")
|
|
|
|
controlnets: list[ControlField]= Field(description="The ControlNets used for inference")
|
|
|
|
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
|
|
|
|
strength: Union[float, None] = Field(
|
|
|
|
default=None,
|
|
|
|
description="The strength used for latents-to-latents",
|
|
|
|
)
|
|
|
|
init_image: Union[str, None] = Field(
|
|
|
|
default=None, description="The name of the initial image"
|
|
|
|
)
|
|
|
|
vae: Union[VAEModelField, None] = Field(
|
|
|
|
default=None,
|
|
|
|
description="The VAE used for decoding, if the main model's default was not used",
|
|
|
|
)
|
|
|
|
|
2023-07-18 14:26:45 +00:00
|
|
|
class Config(InvocationConfig):
|
|
|
|
schema_extra = {
|
|
|
|
"ui": {
|
|
|
|
"title": "Metadata Accumulator",
|
|
|
|
"tags": ["image", "metadata", "generation"]
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
2023-07-12 15:14:22 +00:00
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
|
|
|
|
"""Collects and outputs a CoreMetadata object"""
|
|
|
|
|
|
|
|
return MetadataAccumulatorOutput(
|
|
|
|
metadata=CoreMetadata(
|
|
|
|
generation_mode=self.generation_mode,
|
|
|
|
positive_prompt=self.positive_prompt,
|
|
|
|
negative_prompt=self.negative_prompt,
|
|
|
|
width=self.width,
|
|
|
|
height=self.height,
|
|
|
|
seed=self.seed,
|
|
|
|
rand_device=self.rand_device,
|
|
|
|
cfg_scale=self.cfg_scale,
|
|
|
|
steps=self.steps,
|
|
|
|
scheduler=self.scheduler,
|
|
|
|
model=self.model,
|
|
|
|
strength=self.strength,
|
|
|
|
init_image=self.init_image,
|
|
|
|
vae=self.vae,
|
|
|
|
controlnets=self.controlnets,
|
|
|
|
loras=self.loras,
|
|
|
|
clip_skip=self.clip_skip,
|
|
|
|
)
|
|
|
|
)
|