2023-05-24 05:50:55 +00:00
|
|
|
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
|
2023-05-05 05:16:26 +00:00
|
|
|
|
2023-08-23 19:25:24 +00:00
|
|
|
import math
|
2023-07-03 16:17:45 +00:00
|
|
|
from typing import Literal, Optional, get_args
|
2023-05-05 05:16:26 +00:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from PIL import Image, ImageOps
|
|
|
|
|
2023-08-23 19:25:24 +00:00
|
|
|
from invokeai.app.invocations.primitives import ColorField, ImageField, ImageOutput
|
2023-05-06 09:06:39 +00:00
|
|
|
from invokeai.app.util.misc import SEED_MAX, get_random_seed
|
2023-09-01 16:48:18 +00:00
|
|
|
from invokeai.backend.image_util.cv2_inpaint import cv2_inpaint
|
2023-08-23 19:25:24 +00:00
|
|
|
from invokeai.backend.image_util.lama import LaMA
|
2023-05-05 05:16:26 +00:00
|
|
|
from invokeai.backend.image_util.patchmatch import PatchMatch
|
|
|
|
|
2023-08-14 09:41:29 +00:00
|
|
|
from ..models.image import ImageCategory, ResourceOrigin
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
from .baseinvocation import BaseInvocation, InputField, InvocationContext, invocation
|
2023-09-01 20:36:01 +00:00
|
|
|
from .image import PIL_RESAMPLING_MAP, PIL_RESAMPLING_MODES
|
2023-05-05 05:16:26 +00:00
|
|
|
|
|
|
|
|
|
|
|
def infill_methods() -> list[str]:
|
2023-09-01 16:48:18 +00:00
|
|
|
methods = ["tile", "solid", "lama", "cv2"]
|
2023-05-05 05:16:26 +00:00
|
|
|
if PatchMatch.patchmatch_available():
|
|
|
|
methods.insert(0, "patchmatch")
|
|
|
|
return methods
|
|
|
|
|
|
|
|
|
|
|
|
INFILL_METHODS = Literal[tuple(infill_methods())]
|
2023-07-27 14:54:01 +00:00
|
|
|
DEFAULT_INFILL_METHOD = "patchmatch" if "patchmatch" in get_args(INFILL_METHODS) else "tile"
|
2023-05-05 05:16:26 +00:00
|
|
|
|
|
|
|
|
2023-08-23 19:25:24 +00:00
|
|
|
def infill_lama(im: Image.Image) -> Image.Image:
|
|
|
|
lama = LaMA()
|
|
|
|
return lama(im)
|
|
|
|
|
|
|
|
|
2023-05-05 05:16:26 +00:00
|
|
|
def infill_patchmatch(im: Image.Image) -> Image.Image:
|
|
|
|
if im.mode != "RGBA":
|
|
|
|
return im
|
|
|
|
|
|
|
|
# Skip patchmatch if patchmatch isn't available
|
|
|
|
if not PatchMatch.patchmatch_available():
|
|
|
|
return im
|
|
|
|
|
|
|
|
# Patchmatch (note, we may want to expose patch_size? Increasing it significantly impacts performance though)
|
2023-07-27 14:54:01 +00:00
|
|
|
im_patched_np = PatchMatch.inpaint(im.convert("RGB"), ImageOps.invert(im.split()[-1]), patch_size=3)
|
2023-05-05 05:16:26 +00:00
|
|
|
im_patched = Image.fromarray(im_patched_np, mode="RGB")
|
|
|
|
return im_patched
|
|
|
|
|
|
|
|
|
2023-09-01 16:48:18 +00:00
|
|
|
def infill_cv2(im: Image.Image) -> Image.Image:
|
|
|
|
return cv2_inpaint(im)
|
|
|
|
|
|
|
|
|
2023-05-05 05:16:26 +00:00
|
|
|
def get_tile_images(image: np.ndarray, width=8, height=8):
|
|
|
|
_nrows, _ncols, depth = image.shape
|
|
|
|
_strides = image.strides
|
|
|
|
|
|
|
|
nrows, _m = divmod(_nrows, height)
|
|
|
|
ncols, _n = divmod(_ncols, width)
|
|
|
|
if _m != 0 or _n != 0:
|
|
|
|
return None
|
|
|
|
|
|
|
|
return np.lib.stride_tricks.as_strided(
|
|
|
|
np.ravel(image),
|
|
|
|
shape=(nrows, ncols, height, width, depth),
|
|
|
|
strides=(height * _strides[0], width * _strides[1], *_strides),
|
|
|
|
writeable=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2023-07-27 14:54:01 +00:00
|
|
|
def tile_fill_missing(im: Image.Image, tile_size: int = 16, seed: Optional[int] = None) -> Image.Image:
|
2023-05-05 05:16:26 +00:00
|
|
|
# Only fill if there's an alpha layer
|
|
|
|
if im.mode != "RGBA":
|
|
|
|
return im
|
|
|
|
|
|
|
|
a = np.asarray(im, dtype=np.uint8)
|
|
|
|
|
|
|
|
tile_size_tuple = (tile_size, tile_size)
|
|
|
|
|
|
|
|
# Get the image as tiles of a specified size
|
|
|
|
tiles = get_tile_images(a, *tile_size_tuple).copy()
|
|
|
|
|
|
|
|
# Get the mask as tiles
|
|
|
|
tiles_mask = tiles[:, :, :, :, 3]
|
|
|
|
|
|
|
|
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
|
|
|
|
tmask_shape = tiles_mask.shape
|
|
|
|
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
|
|
|
|
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
|
|
|
|
tiles_mask = tiles_mask > 0
|
|
|
|
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
|
|
|
|
|
|
|
|
# Get RGB tiles in single array and filter by the mask
|
|
|
|
tshape = tiles.shape
|
|
|
|
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
|
|
|
|
filtered_tiles = tiles_all[tiles_mask]
|
|
|
|
|
|
|
|
if len(filtered_tiles) == 0:
|
|
|
|
return im
|
|
|
|
|
|
|
|
# Find all invalid tiles and replace with a random valid tile
|
2023-08-24 02:21:57 +00:00
|
|
|
replace_count = (tiles_mask == False).sum() # noqa: E712
|
2023-05-05 05:16:26 +00:00
|
|
|
rng = np.random.default_rng(seed=seed)
|
2023-07-27 14:54:01 +00:00
|
|
|
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :]
|
2023-05-05 05:16:26 +00:00
|
|
|
|
|
|
|
# Convert back to an image
|
|
|
|
tiles_all = tiles_all.reshape(tshape)
|
|
|
|
tiles_all = tiles_all.swapaxes(1, 2)
|
|
|
|
st = tiles_all.reshape(
|
|
|
|
(
|
|
|
|
math.prod(tiles_all.shape[0:2]),
|
|
|
|
math.prod(tiles_all.shape[2:4]),
|
|
|
|
tiles_all.shape[4],
|
|
|
|
)
|
|
|
|
)
|
|
|
|
si = Image.fromarray(st, mode="RGBA")
|
|
|
|
|
|
|
|
return si
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation("infill_rgba", title="Solid Color Infill", tags=["image", "inpaint"], category="inpaint")
|
2023-05-06 09:06:39 +00:00
|
|
|
class InfillColorInvocation(BaseInvocation):
|
2023-05-06 09:36:51 +00:00
|
|
|
"""Infills transparent areas of an image with a solid color"""
|
2023-05-05 05:16:26 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
image: ImageField = InputField(description="The image to infill")
|
|
|
|
color: ColorField = InputField(
|
2023-05-05 05:16:26 +00:00
|
|
|
default=ColorField(r=127, g=127, b=127, a=255),
|
2023-05-06 09:06:39 +00:00
|
|
|
description="The color to use to infill",
|
2023-05-05 05:16:26 +00:00
|
|
|
)
|
2023-05-06 09:06:39 +00:00
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
2023-06-14 11:40:09 +00:00
|
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
2023-05-06 09:06:39 +00:00
|
|
|
|
|
|
|
solid_bg = Image.new("RGBA", image.size, self.color.tuple())
|
2023-05-24 05:50:55 +00:00
|
|
|
infilled = Image.alpha_composite(solid_bg, image.convert("RGBA"))
|
2023-05-06 09:06:39 +00:00
|
|
|
|
|
|
|
infilled.paste(image, (0, 0), image.split()[-1])
|
|
|
|
|
2023-05-24 05:50:55 +00:00
|
|
|
image_dto = context.services.images.create(
|
|
|
|
image=infilled,
|
2023-05-27 11:39:20 +00:00
|
|
|
image_origin=ResourceOrigin.INTERNAL,
|
2023-05-24 05:50:55 +00:00
|
|
|
image_category=ImageCategory.GENERAL,
|
|
|
|
node_id=self.id,
|
|
|
|
session_id=context.graph_execution_state_id,
|
2023-05-26 01:39:19 +00:00
|
|
|
is_intermediate=self.is_intermediate,
|
2023-08-24 11:42:32 +00:00
|
|
|
workflow=self.workflow,
|
2023-05-06 09:06:39 +00:00
|
|
|
)
|
|
|
|
|
2023-05-24 05:50:55 +00:00
|
|
|
return ImageOutput(
|
2023-06-14 11:40:09 +00:00
|
|
|
image=ImageField(image_name=image_dto.image_name),
|
2023-05-24 05:50:55 +00:00
|
|
|
width=image_dto.width,
|
|
|
|
height=image_dto.height,
|
2023-05-06 09:06:39 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation("infill_tile", title="Tile Infill", tags=["image", "inpaint"], category="inpaint")
|
2023-05-06 09:06:39 +00:00
|
|
|
class InfillTileInvocation(BaseInvocation):
|
|
|
|
"""Infills transparent areas of an image with tiles of the image"""
|
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
image: ImageField = InputField(description="The image to infill")
|
|
|
|
tile_size: int = InputField(default=32, ge=1, description="The tile size (px)")
|
|
|
|
seed: int = InputField(
|
2023-05-06 09:06:39 +00:00
|
|
|
ge=0,
|
|
|
|
le=SEED_MAX,
|
|
|
|
description="The seed to use for tile generation (omit for random)",
|
|
|
|
default_factory=get_random_seed,
|
2023-05-05 05:16:26 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
2023-06-14 11:40:09 +00:00
|
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
2023-05-05 05:16:26 +00:00
|
|
|
|
2023-07-27 14:54:01 +00:00
|
|
|
infilled = tile_fill_missing(image.copy(), seed=self.seed, tile_size=self.tile_size)
|
2023-05-06 09:06:39 +00:00
|
|
|
infilled.paste(image, (0, 0), image.split()[-1])
|
|
|
|
|
2023-05-24 05:50:55 +00:00
|
|
|
image_dto = context.services.images.create(
|
|
|
|
image=infilled,
|
2023-05-27 11:39:20 +00:00
|
|
|
image_origin=ResourceOrigin.INTERNAL,
|
2023-05-24 05:50:55 +00:00
|
|
|
image_category=ImageCategory.GENERAL,
|
|
|
|
node_id=self.id,
|
|
|
|
session_id=context.graph_execution_state_id,
|
2023-05-26 01:39:19 +00:00
|
|
|
is_intermediate=self.is_intermediate,
|
2023-08-24 11:42:32 +00:00
|
|
|
workflow=self.workflow,
|
2023-05-06 09:06:39 +00:00
|
|
|
)
|
|
|
|
|
2023-05-24 05:50:55 +00:00
|
|
|
return ImageOutput(
|
2023-06-14 11:40:09 +00:00
|
|
|
image=ImageField(image_name=image_dto.image_name),
|
2023-05-24 05:50:55 +00:00
|
|
|
width=image_dto.width,
|
|
|
|
height=image_dto.height,
|
2023-05-06 09:06:39 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation("infill_patchmatch", title="PatchMatch Infill", tags=["image", "inpaint"], category="inpaint")
|
2023-05-06 09:06:39 +00:00
|
|
|
class InfillPatchMatchInvocation(BaseInvocation):
|
2023-05-06 09:36:51 +00:00
|
|
|
"""Infills transparent areas of an image using the PatchMatch algorithm"""
|
2023-05-06 09:06:39 +00:00
|
|
|
|
2023-08-14 03:23:09 +00:00
|
|
|
image: ImageField = InputField(description="The image to infill")
|
2023-09-01 20:36:01 +00:00
|
|
|
downscale: Optional[float] = InputField(
|
|
|
|
default=2.0, gt=0, description="Run patchmatch on downscaled image to speedup infill"
|
|
|
|
)
|
|
|
|
resample_mode: Optional[PIL_RESAMPLING_MODES] = InputField(default="bicubic", description="The resampling mode")
|
2023-07-18 14:26:45 +00:00
|
|
|
|
2023-05-06 09:06:39 +00:00
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
2023-09-01 20:08:46 +00:00
|
|
|
image = context.services.images.get_pil_image(self.image.image_name).convert("RGBA")
|
|
|
|
|
|
|
|
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
|
|
|
|
|
|
|
|
infill_image = image.copy()
|
|
|
|
width = int(image.width / self.downscale)
|
|
|
|
height = int(image.height / self.downscale)
|
|
|
|
infill_image = infill_image.resize(
|
|
|
|
(width, height),
|
|
|
|
resample=resample_mode,
|
|
|
|
)
|
2023-05-06 09:06:39 +00:00
|
|
|
|
|
|
|
if PatchMatch.patchmatch_available():
|
2023-09-01 20:08:46 +00:00
|
|
|
infilled = infill_patchmatch(infill_image)
|
2023-05-05 05:16:26 +00:00
|
|
|
else:
|
2023-05-06 09:06:39 +00:00
|
|
|
raise ValueError("PatchMatch is not available on this system")
|
2023-05-05 05:16:26 +00:00
|
|
|
|
2023-09-01 20:08:46 +00:00
|
|
|
infilled = infilled.resize(
|
|
|
|
(image.width, image.height),
|
|
|
|
resample=resample_mode,
|
|
|
|
)
|
|
|
|
|
|
|
|
infilled.paste(image, (0, 0), mask=image.split()[-1])
|
2023-09-01 20:36:01 +00:00
|
|
|
# image.paste(infilled, (0, 0), mask=image.split()[-1])
|
2023-09-01 20:08:46 +00:00
|
|
|
|
2023-05-24 05:50:55 +00:00
|
|
|
image_dto = context.services.images.create(
|
|
|
|
image=infilled,
|
2023-05-27 11:39:20 +00:00
|
|
|
image_origin=ResourceOrigin.INTERNAL,
|
2023-05-24 05:50:55 +00:00
|
|
|
image_category=ImageCategory.GENERAL,
|
|
|
|
node_id=self.id,
|
|
|
|
session_id=context.graph_execution_state_id,
|
2023-05-26 01:39:19 +00:00
|
|
|
is_intermediate=self.is_intermediate,
|
2023-08-24 11:42:32 +00:00
|
|
|
workflow=self.workflow,
|
2023-05-05 05:16:26 +00:00
|
|
|
)
|
|
|
|
|
2023-05-24 05:50:55 +00:00
|
|
|
return ImageOutput(
|
2023-06-14 11:40:09 +00:00
|
|
|
image=ImageField(image_name=image_dto.image_name),
|
2023-05-24 05:50:55 +00:00
|
|
|
width=image_dto.width,
|
|
|
|
height=image_dto.height,
|
2023-05-05 05:16:26 +00:00
|
|
|
)
|
2023-08-23 19:25:24 +00:00
|
|
|
|
|
|
|
|
feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.
The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.
Category is a new invocation metadata, but it is not used by the frontend just yet.
- `@invocation()` decorator for invocations
```py
@invocation(
"sdxl_compel_prompt",
title="SDXL Prompt",
tags=["sdxl", "compel", "prompt"],
category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
...
```
- `@invocation_output()` decorator for invocation outputs
```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
...
```
- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 08:35:12 +00:00
|
|
|
@invocation("infill_lama", title="LaMa Infill", tags=["image", "inpaint"], category="inpaint")
|
2023-08-23 19:25:24 +00:00
|
|
|
class LaMaInfillInvocation(BaseInvocation):
|
|
|
|
"""Infills transparent areas of an image using the LaMa model"""
|
|
|
|
|
|
|
|
image: ImageField = InputField(description="The image to infill")
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
|
|
|
|
infilled = infill_lama(image.copy())
|
|
|
|
|
|
|
|
image_dto = context.services.images.create(
|
|
|
|
image=infilled,
|
|
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
|
|
image_category=ImageCategory.GENERAL,
|
|
|
|
node_id=self.id,
|
|
|
|
session_id=context.graph_execution_state_id,
|
|
|
|
is_intermediate=self.is_intermediate,
|
|
|
|
)
|
|
|
|
|
|
|
|
return ImageOutput(
|
|
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
|
|
width=image_dto.width,
|
|
|
|
height=image_dto.height,
|
|
|
|
)
|
2023-09-01 16:48:18 +00:00
|
|
|
|
|
|
|
|
|
|
|
@invocation("infill_cv2", title="CV2 Infill", tags=["image", "inpaint"], category="inpaint")
|
|
|
|
class CV2InfillInvocation(BaseInvocation):
|
|
|
|
"""Infills transparent areas of an image using OpenCV Inpainting"""
|
|
|
|
|
|
|
|
image: ImageField = InputField(description="The image to infill")
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
|
|
image = context.services.images.get_pil_image(self.image.image_name)
|
|
|
|
|
|
|
|
infilled = infill_cv2(image.copy())
|
|
|
|
|
|
|
|
image_dto = context.services.images.create(
|
|
|
|
image=infilled,
|
|
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
|
|
image_category=ImageCategory.GENERAL,
|
|
|
|
node_id=self.id,
|
|
|
|
session_id=context.graph_execution_state_id,
|
|
|
|
is_intermediate=self.is_intermediate,
|
|
|
|
)
|
|
|
|
|
|
|
|
return ImageOutput(
|
|
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
|
|
width=image_dto.width,
|
|
|
|
height=image_dto.height,
|
|
|
|
)
|